Basalt Fiber Modified Ethylene Vinyl Acetate/Magnesium Hydroxide Composites with Balanced Flame Retardancy and Improved Mechanical Properties
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Pretreatment of Basalt Fiber
2.3. Surface Modification of Basalt Fiber
2.4. Fabrication of EVA/MH-BF Composites
2.5. Characterization
3. Results and Discussion
3.1. Structural Characterization of Modified Basalt fiber
3.2. Flame Retardant Properties
3.3. Mechanical Property
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dutta, S.K.; Bhowmick, A.K.; Mukunda, P.G.; Chaki, T.K. Thermal degradation studies of electron beam cured ethylene-vinyl acetate copolymer. Polym. Degrad. Stab. 1995, 50, 75–82. [Google Scholar] [CrossRef]
- Kalali, E.N.; De Juan, S.; Wang, X.; Nie, S.; Wang, R.; Wang, D.-Y. Comparative study on synergistic effect of LDH and zirconium phosphate with aluminum trihydroxide on flame retardancy of EVA composites. J. Therm. Anal. Calerim. 2015, 121, 619–626. [Google Scholar] [CrossRef]
- Lou, F.; Wu, K.; Wang, Q.; Qian, Z.; Li, S.; Guo, W. Improved flame-retardant and ceramifiable properties of eva composites by combination of ammonium polyphosphate and aluminum hydroxide. Polymers 2019, 11, 125. [Google Scholar] [CrossRef]
- Du, J.-Z.; Jin, L.; Zeng, H.-Y.; Feng, B.; Xu, S.; Zhou, E.-G.; Shi, X.K.; Liu, L.; Hu, X. Facile preparation of an efficient flame retardant and its application in ethylene vinyl acetate. Appl. Clay Sci. 2019, 168, 96–105. [Google Scholar] [CrossRef]
- Oualha, M.A.; Omri, N.; Oualha, R.; Nouioui, M.A.; Abderrabba, M.; Amdouni, N.; Laoutid, F. Development of metal hydroxide nanoparticles from eggshell waste and seawater and their application as flame retardants for ethylene-vinyl acetate copolymer (EVA). Int. J. Biol. Macromol. 2019, 128, 994–1001. [Google Scholar] [CrossRef]
- Zhang, W.; Li, X.; Shan, Z.; Wang, S.; Xiao, Y. Surface modification of magnesium hydroxide by wet process and effect on the thermal stability of silicone rubber. Appl. Surf. Sci. 2019, 465, 740–746. [Google Scholar] [CrossRef]
- Liauw, C.; Lees, G.; Hurst, S.; Rothon, R.; Ali, S. Effect of silane-based filler surface treatment formulation on the interfacial properties of impact modified polypropylene/magnesium hydroxide composites. Compos. Part A Appl. Sci. 1998, 29, 1313–1318. [Google Scholar] [CrossRef]
- Yang, G.; Park, M.; Park, S.-J. Recent progresses of fabrication and characterization of fibers-reinforced composites: A review. Compos. Commun. 2019, 14, 34–42. [Google Scholar] [CrossRef]
- Mudhukrishnan, M.; Hariharan, P.; Palanikumar, K. Measurement and analysis of thrust force and delamination in drilling glass fiber reinforced polypropylene composites using different drills. Measurement 2020, 149, 106973. [Google Scholar] [CrossRef]
- Deng, H.; Xu, J.; Li, X.; Ye, Y.; Chen, H.; Chen, S.; Chen, S.Y.; Miao, L.; Lin, H. The synergistic action between anhydride grafted carbon fiber and intumescent flame retardant enhances flame retardancy and mechanical properties of polypropylene composites. Sci. Technol. Adv. Mater. 2018, 19, 718–731. [Google Scholar] [CrossRef]
- Yang, W.; Jia, Z.; Chen, Y.; Zhang, Y.; Si, J.; Lu, H.; Yang, B. Carbon nanotube reinforced polylactide/basalt fiber composites containing aluminium hypophosphite: Thermal degradation, flame retardancy and mechanical properties. RSC Adv. 2015, 5, 105869–105879. [Google Scholar] [CrossRef]
- Khosravi, H.; Eslami-Farsani, R. Enhanced mechanical properties of unidirectional basalt fiber/epoxy composites using silane-modified Na+-montmorillonite nanoclay. Polym. Test. 2016, 55, 135–142. [Google Scholar] [CrossRef]
- Bhat, T.; Chevali, V.; Liu, X.; Feih, S.; Mouritz, A.P. Fire structural resistance of basalt fibre composite. Compos. Part A Appl. Sci. 2015, 71, 107–115. [Google Scholar] [CrossRef]
- Wei, B.; Song, S.; Cao, H. Strengthening of basalt fibers with nano-SiO2–epoxy composite coating. Mater. Des. 2011, 32, 4180–4186. [Google Scholar] [CrossRef]
- Sang, L.; Zhao, M.; Liang, Q.; Wei, Z. Silane-treated basalt fiber–reinforced poly(butylene succinate) biocomposites: Interfacial crystallization and tensile properties. Polymers 2017, 9, 351. [Google Scholar] [CrossRef] [PubMed]
- Xiao, B.; Li, H.; Xian, G. Hygrothermal Ageing of Basalt Fiber Reinforced Epoxy Composites. In Advances in FRP Composites in Civil Engineering; Ye, L., Feng, P., Yue, Q., Eds.; Springer: Beijing, China, 2010; pp. 356–359. [Google Scholar]
- Sang, L.; Han, S.; Li, Z.; Yang, X.; Hou, W. Development of short basalt fiber reinforced polylactide composites and their feasible evaluation for 3D printing applications. Compos. Part B Eng. 2019, 164, 629–639. [Google Scholar] [CrossRef]
- Attia, N.F.; Hegazi, E.M.; Abdelmageed, A.A. Smart modification of inorganic fibers and flammability mechanical and radiation shielding properties of their rubber composites. J. Therm. Anal. Calerim. 2018, 132, 1567–1578. [Google Scholar] [CrossRef]
- Guo, J.; Mu, S.; Yu, C.; Hu, C.; Guan, F.; Zhang, H.; Gong, Y. Mechanical and thermal properties of polypropylene/modified basalt fabric composites. J. Appl. Polym. Sci. 2015, 132, 42504. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, X.; Ni, H.; Rong, X.; Zhang, Q.; Xiao, X.; Huan, H.; Liu, J.F.; Wu, Z. Surface modification of basalt fiber with organic/inorganic composites for biofilm carrier used in wastewater treatment. ACS Sustain. Chem. Eng. 2018, 6, 2596–2602. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, S.; Huang, J.; Zhao, G.; Liu, Y. Interfacial modification of basalt fiber filling composites with graphene oxide and polydopamine for enhanced mechanical and tribological properties. RSC Adv. 2018, 8, 12222–12231. [Google Scholar] [CrossRef]
- Hu, X. Study on Surface Modification of Basalt Microfibers to Reinforce Phenolic Resin Composites and its Friction Properties. Master’s Thesis, Southeast University, Nanjing, China, 2019. [Google Scholar]
- Li, W.; Chen, M.; Yang, Y.; Yuan, D.; Ren, Y.; Cai, X. Dielectric property of modified barium titanate/polyamide 11 nanocomposites with different surfactants. J. Appl. Polym. Sci. 2019, 136, 47447. [Google Scholar] [CrossRef]
- Chen, B.; Zhao, T.; Luan, D.; Liao, L.; Huang, L.; Tang, Q. Effect of interfacial interaction on rheological, electrically conductive, and electromagnetic shielding properties of polyethylene/GO composites. Polym. Eng. Sci. 2018, 58, 1174–1181. [Google Scholar] [CrossRef]
- Peng, C.; Zhang, H.; You, Z.; Xu, F.; Jiang, G.; Lv, S.; Zhang, R.; Yang, H. Preparation and anti-icing properties of a superhydrophobic silicone coating on asphalt mixture. Constr. Build. Mater. 2018, 189, 227–235. [Google Scholar] [CrossRef]
- Qi, C. Preparation of Basalt Continuous Fiber Wetting Agent and its Influence on Fiber Properties. Master’s Thesis, Harbin University of Technology, Heilongjiang, China, 2010. [Google Scholar]
- Du, S.; Lin, X.; Jian, R.; Deng, C.; Wang, Y. Flame-retardant wrapped ramie fibers towards suppressing “candlewick effect” of polypropylene/ramie fiber composites. Chin. J. Polym. Sci. 2014, 33, 84–94. [Google Scholar] [CrossRef]
- Qiu, J.; Lai, X.; Li, H.; Gao, J.; Zeng, X.; Liao, X. Facile fabrication of a novel polyborosiloxane-decorated layered double hydroxide for remarkably reducing fire hazard of silicone rubber. Compos. Part B Eng. 2019, 175, 107068. [Google Scholar] [CrossRef]
- Islam, M.N.; Islam, M.S. mechanical properties of chemically treated sawdust-reinforced recycled polyethylene composites. Ind. Eng. Chem. Res. 2011, 50, 11124–11129. [Google Scholar] [CrossRef]
- Zhang, Z.; Qin, J.; Zhang, W.; Pan, Y.-T.; Wang, D.-Y.; Yang, R. Synthesis of a novel dual layered double hydroxide hybrid nanomaterial and its application in epoxy nanocomposites. Chem. Eng. J. 2020, 381, 122777. [Google Scholar] [CrossRef]
- Wen, X.; Liu, Z.; Li, Z.; Zhang, J.; Wang, D.-Y.; Szymańska, K.; Chen, X.; Mijowska, E.; Tang, T. Constructing multifunctional nanofiller with reactive interface in PLA/CB-g-DOPO composites for simultaneously improving flame retardancy, electrical conductivity and mechanical properties. Compos. Sci. Technol. 2019, 188, 107988. [Google Scholar] [CrossRef]
- Wang, X.; Kalali, E.N.; Wang, D.-Y. An in situ polymerization approach for functionalized MoS2/nylon-6 nanocomposites with enhanced mechanical properties and thermal stability. J. Mater. Chem. A 2015, 3, 24112–24120. [Google Scholar] [CrossRef]
Sample | EVA/phr | MH/phr | PBF/phr | MBF/phr |
---|---|---|---|---|
EVA/MH | 100 | 150 | / | / |
EVA/MH-PBF5 | 100 | 150 | 5 | / |
EVA/MH-PBF10 | 100 | 150 | 10 | / |
EVA/MH-PBF15 | 100 | 150 | 15 | / |
EVA/MH-PBF20 | 100 | 150 | 20 | / |
EVA/MH-MBF5 | 100 | 150 | / | 5 |
EVA/MH-MBF10 | 100 | 150 | / | 10 |
EVA/MH-MBF15 | 100 | 150 | / | 15 |
EVA/MH-MBF20 | 100 | 150 | / | 20 |
TTI (s) | pHRR (kW/m2) | TpHRR (s) | THR (MJ/m2) | pSPR (m2/s) | TSP (m2) | FIGRA (kW/(m2·s)) | |
---|---|---|---|---|---|---|---|
EVA | 29 ± 4 | 1196 ± 271 | 175 ± 5 | 139 ± 15 | 0.100 ± 0.001 | 14.7 ± 0.7 | 6.83 |
EVA/MH | 59 ± 6 | 260 ± 3 | 130 ± 25 | 109 ± 10 | 0.037 ± 0.002 | 10.1 ± 2.0 | 2.00 |
EVA/MH-PBF15 | 57 ± 1 | 242 ± 2 | 105 ± 5 | 96 ± 5 | 0.027 ± 0.002 | 8.4 ± 0.5 | 2.30 |
EVA/MH-MBF15 | 56 ± 1 | 219 ± 14 | 100 ± 15 | 93 ± 13 | 0.038 ± 0.009 | 8.6 ± 0.2 | 2.19 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, D.; Yin, G.; Bi, Q.; Yin, X.; Wang, N.; Wang, D.-Y. Basalt Fiber Modified Ethylene Vinyl Acetate/Magnesium Hydroxide Composites with Balanced Flame Retardancy and Improved Mechanical Properties. Polymers 2020, 12, 2107. https://doi.org/10.3390/polym12092107
Yao D, Yin G, Bi Q, Yin X, Wang N, Wang D-Y. Basalt Fiber Modified Ethylene Vinyl Acetate/Magnesium Hydroxide Composites with Balanced Flame Retardancy and Improved Mechanical Properties. Polymers. 2020; 12(9):2107. https://doi.org/10.3390/polym12092107
Chicago/Turabian StyleYao, Dongwei, Guangzhong Yin, Qingqing Bi, Xu Yin, Na Wang, and De-Yi Wang. 2020. "Basalt Fiber Modified Ethylene Vinyl Acetate/Magnesium Hydroxide Composites with Balanced Flame Retardancy and Improved Mechanical Properties" Polymers 12, no. 9: 2107. https://doi.org/10.3390/polym12092107
APA StyleYao, D., Yin, G., Bi, Q., Yin, X., Wang, N., & Wang, D.-Y. (2020). Basalt Fiber Modified Ethylene Vinyl Acetate/Magnesium Hydroxide Composites with Balanced Flame Retardancy and Improved Mechanical Properties. Polymers, 12(9), 2107. https://doi.org/10.3390/polym12092107