A Modified 3D-QSAR Model Based on Ideal Point Method and Its Application in the Molecular Modification of Plasticizers with Flame Retardancy and Eco-Friendliness
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sources of Data
2.2. Multi-Effect Comprehensive Evaluation Method for PAEs’ Flammability, Biotoxicity, and Enrichment—Ideal Point Method
2.3. Construction of PAEs’ Flammability, Biotoxicity, and Enrichment Multi-Effect 3D-QSAR Model
2.4. Evaluation of Eco-Friendliness, Stability, and Insulation of PAE Derivatives
3. Results
3.1. Construction and Verification of Multi-Effect 3D-QSAR Model of PAEs’ Flammability, Biotoxicity, and Enrichment
3.2. Molecular Modification and Evaluation Based on PAEs’ 3D-QSAR Model
3.3. Evaluation of Eco-Friendliness, Stability, and Insulation of PAE Derivatives
3.4. Mechanism Analysis of PAE Derivatives’ Improved Multi-Effect and Flammability, Biotoxicity, Enrichment Effects
3.4.1. Mechanism Analysis of PAE Derivatives’ Improved Multiple Effects Based on the Three-Dimension Contour Maps
3.4.2. Mechanism Analysis of PAE Derivatives’ Improved Multiple Effects Based on Modified Group Properties
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shrivastava, A. Plastic Properties and Testing. In Introduction to Plastics Engineering; Elsevier BV: Amsterdam, The Netherlands, 2018; Volume 3, pp. 49–110. [Google Scholar]
- Yu, G.; Ma, C.; Li, J. Flame retardant effect of cytosine pyrophosphate and pentaerythritol on polypropylene. Compos. Part B Eng. 2020, 180, 107520. [Google Scholar] [CrossRef]
- Beaugendre, A.; Lemesle, C.; Bellayer, S.; Degoutin, S.; Duquesne, S.; Casetta, M.; Pierlot, C.; Jaime, F.; Kim, T.; Jimenez, M. Flame retardant and weathering resistant self-layering epoxy-silicone coatings for plastics. Prog. Org. Coat. 2019, 136, 105269. [Google Scholar] [CrossRef]
- Smith, R.; Georlette, P.; Finberg, I.; Reznick, G. Development of environmentally friendly multifunctional flame retardants for commodity and engineering plastics. Polym. Degrad. Stab. 1996, 54, 167–173. [Google Scholar] [CrossRef]
- Ribeiro, F.; O’Brien, J.; Galloway, T.; Thomas, K.V. Accumulation and fate of nano- and micro-plastics and associated contaminants in organisms. TrAC Trends Anal. Chem. 2019, 111, 139–147. [Google Scholar] [CrossRef]
- Xu, S.; Ma, J.; Ji, R.; Pan, K.; Miao, A.-J. Microplastics in aquatic environments: Occurrence, accumulation, and biological effects. Sci. Total. Environ. 2020, 703, 134699. [Google Scholar] [CrossRef]
- Cole, M.; Lindeque, P.; Halsband, C.; Galloway, T.S. Microplastics as contaminants in the marine environment: A review. Mar. Pollut. Bull. 2011, 62, 2588–2597. [Google Scholar] [CrossRef]
- Llorca, M.; Álvarez-Muñoz, D.; Ábalos, M.; Rodríguez-Mozaz, S.; Santos, L.H.; León, V.M.; Campillo, J.A.; Martínez-Gómez, C.; Abad, E.; Farré, M. Microplastics in Mediterranean coastal area: Toxicity and impact for the environment and human health. Trends Environ. Anal. Chem. 2020, 27, e00090. [Google Scholar] [CrossRef]
- Amereh, F.; Babaei, M.; Eslami, A.; Fazelipour, S.; Rafiee, M. The emerging risk of exposure to nano(micro)plastics on endocrine disturbance and reproductive toxicity: From a hypothetical scenario to a global public health challenge. Environ. Pollut. 2020, 261, 114158. [Google Scholar] [CrossRef]
- Abayomi, O.A.; Range, P.; Al-Ghouti, M.A.; Obbard, J.P.; Almeer, S.H.; Ben-Hamadou, R. Microplastics in coastal environments of the Arabian Gulf. Mar. Pollut. Bull. 2017, 124, 181–188. [Google Scholar] [CrossRef]
- Wang, W.; Ge, J.; Yu, X. Bioavailability and toxicity of microplastics to fish species: A review. Ecotoxicol. Environ. Saf. 2020, 189, 109913. [Google Scholar] [CrossRef]
- Lu, L.; Wan, Z.; Luo, T.; Fu, Z.; Jin, Y. Polystyrene microplastics induce gut microbiota dysbiosis and hepatic lipid metabolism disorder in mice. Sci. Total. Environ. 2018, 631–632, 449–458. [Google Scholar] [CrossRef]
- Wu, F.; Wang, Y.; Leung, J.Y.S.; Huang, W.; Zeng, J.; Tang, Y.; Chen, J.; Shi, A.; Yu, X.; Xu, X.; et al. Accumulation of microplastics in typical commercial aquatic species: A case study at a productive aquaculture site in China. Sci. Total. Environ. 2020, 708, 135432. [Google Scholar] [CrossRef]
- Youli, Q.; Long, J.; Yu, L. Theoretical support for the enhancement of infrared spectrum signals by derivatization of phthalic acid esters using a pharmacophore model. Spectrosc. Lett. 2018, 51, 155–162. [Google Scholar] [CrossRef]
- Jia, P.; Zhang, M.; Hu, L.; Feng, G.; Bo, C.; Zhou, Y. Synthesis and Application of Environmental Castor Oil Based Polyol Ester Plasticizers for Poly(vinyl chloride). ACS Sustain. Chem. Eng. 2015, 3, 2187–2193. [Google Scholar] [CrossRef]
- Liepins, R.; Pearce, E.M. Chemistry and Toxicity of Flame Retardants for Plastics. Environ. Health Perspect. 1976, 17, 55–63. [Google Scholar] [CrossRef]
- Wang, F.; Pan, S.; Zhang, P.; Fan, H.; Chen, Y.; Yan, J. Synthesis and Application of Phosphorus-containing Flame Retardant Plasticizer for Polyvinyl Chloride. Fibers Polym. 2018, 19, 1057–1063. [Google Scholar] [CrossRef]
- Kumar, A.; T’Ien, J.S. A computational study of low oxygen flammability limit for thick solid slabs. Combust. Flame 2006, 146, 366–378. [Google Scholar] [CrossRef]
- Fromme, H.; Küchler, T.; Otto, T.; Pilz, K.; Müller, J.; Wenzel, A. Occurrence of phthalates and bisphenol A and F in the environment. Water Res. 2002, 36, 1429–1438. [Google Scholar] [CrossRef]
- Jobling, S.; Reynolds, T.; White, R.; Parker, M.G.; Sumpter, J.P. A variety of environmentally persistent chemicals, including some phthalate plasticizers, are weakly estrogenic. Environ. Health Perspect. 1995, 103, 582–587. [Google Scholar] [CrossRef]
- Poopal, R.-K.; Zhang, J.; Zhao, R.; Ramesh, M.; Ren, Z. Biochemical and behavior effects induced by diheptyl phthalate (DHpP) and Diisodecyl phthalate (DIDP) exposed to zebrafish. Chemosphere 2020, 252, 126498. [Google Scholar] [CrossRef]
- Marx, J.L. Phthalic Acid Esters: Biological Impact Uncertain. Science 1972, 178, 46–47. [Google Scholar] [CrossRef] [PubMed]
- Jeong, W.; Cho, S.; Lee, H.; Deb, G.; Lee, Y.; Kwon, T.; Kong, I. Effect of cytoplasmic lipid content on in vitro developmental efficiency of bovine IVP embryos. Theriogenology 2009, 72, 584–589. [Google Scholar] [CrossRef]
- Wu, N.; Niu, F.; Lang, W.; Yu, J.; Fu, G. Synthesis of reactive phenylphosphoryl glycol ether oligomer and improved flame retardancy and mechanical property of modified rigid polyurethane foams. Mater. Des. 2019, 181, 107929. [Google Scholar] [CrossRef]
- Vahabi, H.; Kandola, B.K.; Saeb, M. Flame Retardancy Index for Thermoplastic Composites. Polymers 2019, 11, 407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vahabi, H.; Laoutid, F.; Movahedifar, E.; Khalili, R.; Rahmati, N.; Vagner, C.; Cochez, M.; Brison, L.; Ducos, F.; Ganjali, M.R.; et al. Description of complementary actions of mineral and organic additives in thermoplastic polymer composites by Flame Retardancy Index. Polym. Adv. Technol. 2019, 30, 2056–2066. [Google Scholar] [CrossRef]
- Li, Q.; Qiu, Y.; Li, Y. Molecular Design of Environment-Friendly PAE Derivatives Based on 3D-QSAR Assisted with a Comprehensive Evaluation Method Combining Toxicity and Estrogen Activities. Water Air Soil Pollut. 2020, 231, 1–13. [Google Scholar] [CrossRef]
- Xu, Y.L.; Wang, Y.H.; Xia, G.L. Practical Flame Retardant Technology for High Polymer Materials, 1st ed.; Chemical Industry Press: Beijing, China, 1987; pp. 78–103. [Google Scholar]
- Donckels, B.M.; De Pauw, D.J.; Vanrolleghem, P.; De Baets, B. An ideal point method for the design of compromise experiments to simultaneously estimate the parameters of rival mathematical models. Chem. Eng. Sci. 2010, 65, 1705–1719. [Google Scholar] [CrossRef]
- Nilsson, L.M.; Carter, R.E.; Sterner, O.; Liljefors, T. Structure-Activity Relationships for Unsaturated Dialdehydes 2. A PLS Correlation of Theoretical Descriptors for Six Compounds with Mutagenic Activity in the Ames Salmonella Assay. Quant. Struct. Relationships 1988, 7, 84–91. [Google Scholar] [CrossRef]
- Chang, M.-W.; Lin, C.-J. Leave-One-Out Bounds for Support Vector Regression Model Selection. Neural Comput. 2005, 17, 1188–1222. [Google Scholar] [CrossRef] [Green Version]
- Gu, W.; Chen, Y.; Zhang, L.; Li, Y. Prediction of octanol-water partition coefficient for polychlorinated naphthalenes through three-dimensional QSAR models. Hum. Ecol. Risk Assess. Int. J. 2016, 23, 1–16. [Google Scholar] [CrossRef]
- Mahapatra, M.K.; Bera, K.; Singh, D.V.; Kumar, R.; Kumar, M. In silico modelling and molecular dynamics simulation studies of thiazolidine based PTP1B inhibitors. J. Biomol. Struct. Dyn. 2017, 36, 1195–1211. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Mao, J.; Li, W.; Koike, K.; Wang, J. Improved 3D-QSAR prediction by multiple-conformational alignment: A case study on PTP1B inhibitors. Comput. Biol. Chem. 2019, 83, 107134. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Zhao, Y.; Li, Q.; Li, Y. Highly biodegradable fluoroquinolone derivatives designed using the 3D-QSAR model and biodegradation pathways analysis. Ecotoxicol. Environ. Saf. 2020, 191, 110186. [Google Scholar] [CrossRef]
- Gissi, A.; Lombardo, A.; Roncaglioni, A.; Gadaleta, D.; Mangiatordi, G.F.; Nicolotti, O.; Benfenati, E. Evaluation and comparison of benchmark QSAR models to predict a relevant REACH endpoint: The bioconcentration factor (BCF). Environ. Res. 2015, 137, 398–409. [Google Scholar] [CrossRef]
- Gu, W.; Zhao, Y.; Li, Q.; Li, Y. Environmentally friendly polychlorinated naphthalenes (PCNs) derivatives designed using 3D-QSAR and screened using molecular docking, density functional theory and health-based risk assessment. J. Hazard. Mater. 2019, 363, 316–327. [Google Scholar] [CrossRef]
- Golbraikh, A.; Tropsha, A. Beware of q2! J. Mol. Graph. Model. 2002, 20, 269–276. [Google Scholar] [CrossRef]
- Babu, S.; Sohn, H.; Madhavan, T. Computational Analysis of CRTh2 receptor antagonist: A Ligand-based CoMFA and CoMSIA approach. Comput. Biol. Chem. 2015, 56, 109–121. [Google Scholar] [CrossRef]
- Liu, S.; Sun, S. Combined QSAR/QSPR, Molecular Docking, and Molecular Dynamics Study of Environmentally Friendly PBDEs with Improved Insulating Properties. Chem. Res. Chin. Univ. 2019, 35, 478–484. [Google Scholar] [CrossRef]
- Hennig, C.; Cooper, D.M. Brief communication: The relation between standard error of the estimate and sample size of histomorphometric aging methods. Am. J. Phys. Anthropol. 2011, 145, 658–664. [Google Scholar] [CrossRef]
- Halder, A.; Saha, A.; Jha, T. Exploring QSAR and pharmacophore mapping of structurally diverse selective matrix metalloproteinase-2 inhibitors. J. Pharm. Pharmacol. 2013, 65, 1541–1554. [Google Scholar] [CrossRef]
- Khan, N.; Halim, S.A.; Khan, W.; Zafar, S.K.; Ul-Haq, Z. In-silico designing and characterization of binding modes of two novel inhibitors for CB1 receptor against obesity by classical 3D-QSAR approach. J. Mol. Graph. Model. 2019, 89, 199–214. [Google Scholar] [CrossRef]
- Nazari, M.; Tabatabai, S.A.; Rezaee, E. 2D & 3D-QSAR Study on Novel Piperidine and Piperazine Derivatives as Acetylcholinesterase Enzyme Inhibitors. Curr. Comput. Drug Des. 2018, 14, 391–397. [Google Scholar] [CrossRef]
- Khabeev, N.S.; Shagapov, V.; Yumagulova, Y.; Bailey, S. Evolution of vapor pressure at contact with liquid. Acta Astronaut. 2015, 114, 147–151. [Google Scholar] [CrossRef]
- Wania, F. Assessing the Potential of Persistent Organic Chemicals for Long-Range Transport and Accumulation in Polar Regions. Environ. Sci. Technol. 2003, 37, 1344–1351. [Google Scholar] [CrossRef]
Molecule | LOI (%) | Fish LC50 (mg/L) | logBCF | logHL | logKOA | Z |
---|---|---|---|---|---|---|
dimethyl phthalate (DMP) | 22.44 | 40.822 | 0.723 | 3.617 | 6.694 | 0.371 |
diisopropyl phthalate (DIPrP) | 21.34 | 4.568 | 1.534 | 3.179 | 7.376 | 0.599 |
diethyl phthalate (DEP) | 21.82 | 12.471 | 1.264 | 3.156 | 7.505 | 0.526 |
di-n-butyl phthalate (DBP) | 20.95 | 1.113 | 2.636 | 2.734 | 8.631 | 0.712 |
di-isopentyl phthalate (DIPP) | 20.63 | 0.398 | 3.260 | 2.904 | 9.504 | 0.794 |
benzyl butyl phthalate (BBP) | 20.57 | 0.911 | 2.788 | 2.915 | 9.018 | 0.760 |
diisobutyl phthalate (DIBP) | 20.95 | 1.356 | 2.379 | 3.182 | 8.412 | 0.692 |
di-n-octyl phthalate (DNOP) | 19.96 | 0.008 | 2.988 | 2.655 | 12.079 | 0.845 |
diundecyl phthalate (DUP) | 19.52 | 0.000183 | 1.330 | 1.398 | 14.068 | 0.818 |
di-isoheptyl phthalate (DIHP) | 20.15 | 0.028 | 3.255 | 2.501 | 11.122 | 0.844 |
ditridecyl phthalate (DTDP) | 19.31 | 0.0000146 | 0.964 | 0.924 | 15.535 | 0.841 |
di-n-hexyl phthalate (DHP) | 20.37 | 0.095 | 2.793 | 1.639 | 9.799 | 0.784 |
di-n-pentyl phthalate (DPP) | 20.63 | 0.327 | 2.001 | 3.063 | 9.674 | 0.703 |
diallyl phthalate (DAP) | 21.40 | 5.323 | 1.798 | 3.895 | 8.032 | 0.605 |
di-iso-hexyl-phthalates (DIHxP) | 20.37 | 0.116 | 3.908 | 2.623 | 10.239 | 0.880 |
di-n-propyl phthalate (DPrP) | 21.34 | 3.749 | 1.825 | 3.362 | 8.053 | 0.617 |
dimethoxyethyl phthalate (DMEP) | 20.90 | 124.130 | 0.402 | 9.544 | 9.766 | 0.311 |
Molecule | Z | Pred. | Relative Error (%) |
---|---|---|---|
DMP a | 0.371 | 0.369 | −0.54 |
DIPrP a | 0.599 | 0.599 | 0.00 |
DEP b | 0.526 | 0.563 | 7.03 |
DBP a | 0.712 | 0.703 | −1.26 |
DIPP b | 0.794 | 0.583 | −26.57 |
BBP a | 0.760 | 0.760 | 0.00 |
DIBP a | 0.692 | 0.692 | 0.00 |
DNOP b | 0.845 | 0.752 | −11.01 |
DUP a | 0.818 | 0.818 | 0.00 |
DIHP a | 0.844 | 0.844 | 0.00 |
DTDP b | 0.841 | 0.814 | −3.21 |
DHP a | 0.784 | 0.784 | 0.00 |
DPP a | 0.703 | 0.707 | 0.57 |
DAP a | 0.605 | 0.605 | 0.00 |
DIHxP a | 0.880 | 0.880 | 0.00 |
DPrP a | 0.617 | 0.624 | 1.13 |
DMEP a | 0.311 | 0.311 | 0.00 |
Model | n | q2 | r2 | SEE | F | r2pred | SEP | S | E | H | D | A |
---|---|---|---|---|---|---|---|---|---|---|---|---|
CoMSIA | 10 | 0.616 | 1 | 0.008 | 507.314 | 0.66 | 0.16 | 22.90% | 14.00% | 44.90% | 0.00% | 11.20% |
3D-QSAR Model | Template Molecule | q2 | n | r2 | F | SEE | r2pred | SEP |
---|---|---|---|---|---|---|---|---|
Flammability | DMP | 0.580 | 10 | 1.000 | 9275.112 | 0.010 | 0.901 | 0.346 |
Biotoxicity | DTDP | 0.832 | 6 | 0.999 | 1375.319 | 0.077 | 0.997 | 0.169 |
Concentration | DIHxP | 0.526 | 6 | 0.999 | 673.700 | 0.054 | 0.868 | 1.096 |
Degradability | DAP | 0.747 | 4 | 0.958 | 39.680 | 0.222 | 0.724 | 0.494 |
Mobility | DTDP | 0.756 | 4 | 0.998 | 162.553 | 0.342 | 0.993 | 0.311 |
3D-QSAR Model | S (%) | E (%) | H (%) | D (%) | A (%) |
---|---|---|---|---|---|
Flammability | 30.7 | 15.9 | 39.6 | 0 | 13.7 |
Biotoxicity | 31.0 | 13.2 | 44.4 | 0.0 | 11.3 |
Concentration | 32.4 | 15.3 | 41.9 | 0.0 | 10.3 |
Degradability | 35.7 | 12.9 | 47.5 | 0.0 | 3.9 |
Mobility | 32.5 | 13.7 | 42.1 | 0.0 | 11.6 |
Flammability Model | Biotoxicity Model | Concentration Model | Degradability Model | Mobility Model | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Molecule | LOI (%) | Pred. | Relative Error (%) | Molecule | logLC50 | Pred. | Relative Error (%) | Molecule | logBCF | Pred. | Relative Error (%) | Molecule | logHL | Pred. | Relative Error (%) | Molecule | logKOA | Pred. | Relative Error (%) |
DMP a | 22.44 | 22.440 | 0.00 | DMP a | 1.61 | 1.601 | −0.56 | DMP a | 0.723 | 0.742 | 2.63 | DMP a | 3.617 | 3.622 | 0.14 | DMP a | 6.694 | 6.737 | 0.64 |
DIPrP a | 21.34 | 21.341 | 0.00 | DIPrP a | 0.66 | 0.679 | 2.88 | DIPrP a | 1.534 | 1.573 | 2.54 | DIPrP a | 3.179 | 3.381 | 6.35 | DIPrP a | 7.376 | 7.66 | 3.85 |
DEP a | 21.82 | 21.820 | 0.00 | DEP a | 1.10 | 1.075 | −2.27 | DEP a | 1.264 | 1.248 | −1.27 | DEP b | 3.156 | 3.363 | 6.56 | DEP b | 7.505 | 7.72 | 2.86 |
DBP a | 20.95 | 20.943 | −0.03 | DBP a | 0.05 | 0.105 | 110.00 | DBP b | 2.636 | 2.333 | −11.49 | DBP a | 2.734 | 3.073 | 12.40 | DBP b | 8.631 | 8.548 | −0.96 |
DIPP b | 20.63 | 20.778 | 0.72 | DIPP a | −0.40 | −0.428 | 7.00 | DIPP a | 3.26 | 3.259 | −0.03 | DIPP b | 2.904 | 3.251 | 11.95 | DIPP a | 9.504 | 9.597 | 0.98 |
BBP a | 20.57 | 20.570 | 0.00 | BBP a | −0.04 | −0.053 | 32.50 | BBP a | 2.788 | 2.798 | 0.36 | BBP b | 2.915 | 3.266 | 12.04 | BBP b | 9.018 | 9.074 | 0.62 |
DIBP a | 20.95 | 20.950 | 0.00 | DIBP a | 0.13 | 0.130 | 0.00 | DIBP a | 2.379 | 2.403 | 1.01 | DIBP a | 3.182 | 3.137 | −1.41 | DIBP a | 8.412 | 8.607 | 2.32 |
DNOP b | 19.96 | 20.124 | 0.82 | DNOP a | −2.10 | −2.102 | 0.10 | DNOP b | 2.988 | 2.532 | −15.26 | DNOP a | 2.655 | 2.787 | 4.97 | DNOP a | 12.079 | 11.845 | −1.94 |
DUP a | 19.52 | 19.512 | −0.04 | DUP a | −3.74 | −3.850 | 2.94 | DUP a | 1.33 | 1.363 | 2.48 | DUP a | 1.398 | 1.309 | −6.37 | DUP b | 14.068 | 14.352 | 2.02 |
DIHP a | 20.15 | 20.150 | 0.00 | DIHP a | −1.55 | −1.556 | 0.39 | DIHP a | 3.255 | 3.226 | −0.89 | DIHP a | 2.501 | 2.408 | −3.72 | DIHP a | 11.122 | 10.857 | −2.38 |
DTDP a | 19.31 | 19.316 | 0.03 | DTDP a | −2.10 | −2.102 | 0.10 | DTDP a | 0.964 | 0.932 | −3.32 | DTDP a | 0.924 | 0.976 | 5.63 | DTDP a | 15.535 | 15.427 | −0.70 |
DHP a | 20.37 | 20.376 | 0.03 | DHP a | −1.02 | −1.066 | 4.51 | DHP a | 2.793 | 2.84 | 1.68 | DHP b | 1.639 | 2.543 | 55.16 | DHP a | 9.799 | 10.219 | 4.29 |
DPP b | 20.63 | 20.622 | −0.04 | DPP b | −0.49 | −0.469 | −4.29 | DAP b | 1.798 | 1.835 | 2.06 | DPP a | 3.063 | 2.82 | −7.93 | DPP a | 9.674 | 9.377 | −3.07 |
DAP a | 21.40 | 21.399 | 0.00 | DAP b | 0.73 | 0.504 | −30.96 | DIHxP a | 3.908 | 3.894 | −0.36 | DAP a | 3.895 | 3.608 | −7.37 | DAP b | 8.032 | 8.079 | 0.59 |
DIHxP b | 20.37 | 20.784 | 2.03 | DPrP b | 0.57 | 0.671 | 17.72 | DPrP a | 1.825 | 1.745 | −4.38 | DIHxP a | 2.623 | 2.7 | 2.94 | DIHxP a | 10.239 | 9.886 | −3.45 |
DPrP a | 21.34 | 21.344 | 0.02 | DMEP a | 2.09 | 2.134 | 2.11 | DPrP a | 3.362 | 3.31 | −1.55 | DPrP a | 8.053 | 7.707 | −4.30 | ||||
DMEP a | 20.90 | 20.900 | 0.00 | DMEP a | 9.766 | 10.049 | 2.90 |
Molecule | Z | Decreasing (%) | LOI | Increasing (%) | logLC50 | Increasing (%) | logBCF | Decreasing (%) |
---|---|---|---|---|---|---|---|---|
DMP | 0.371 | - | 22.44 | - | 1.61 | - | 0.723 | - |
DMP-1-CH2NO2 | 0.085 | 77.09 | 23.39 | 4.23 | 1.76 | 9.50 | 0.161 | 77.73 |
DMP-1-NO2 | 0.234 | 36.93 | 22.92 | 2.13 | 1.98 | 22.67 | 0.372 | 48.55 |
DMP-1-CH3-2-CH2NO2 | 0.145 | 60.92 | 23.12 | 3.03 | 2.29 | 42.48 | 0.353 | 51.18 |
DMP-1-CH3-2-NO2 | 0.292 | 21.29 | 22.66 | 0.98 | 2.17 | 34.97 | 0.556 | 23.10 |
DAP | 0.605 | - | 21.40 | - | 0.73 | - | 1.798 | - |
DAP-1-CH2NO2 | 0.325 | 46.28 | 22.23 | 3.86 | 2.28 | 212.47 | 1.007 | 43.99 |
DAP-1-SH | 0.519 | 14.21 | 21.82 | 1.94 | 1.13 | 54.52 | 1.360 | 24.36 |
DAP-2-CH2NO2 | 0.279 | 53.88 | 22.52 | 5.24 | 2.27 | 210.41 | 0.162 | 90.99 |
DAP-2-NO2 | 0.293 | 51.57 | 22.36 | 4.50 | 1.94 | 165.89 | 0.183 | 89.82 |
DAP-2-SH | 0.557 | 7.93 | 21.64 | 1.13 | 0.94 | 28.63 | 1.604 | 10.79 |
DAP-1-NO2-2-CH2C6H5 | 0.301 | 50.25 | 22.65 | 5.83 | 1.66 | 127.81 | 1.182 | 34.26 |
DAP-1-NO2-2-CH2CH3 | 0.365 | 39.67 | 22.57 | 5.49 | 1.88 | 157.95 | 1.482 | 17.58 |
DAP-1-NO2-2-CH2NO2 | 0.164 | 72.89 | 23.18 | 8.30 | 2.55 | 249.45 | 1.324 | 26.36 |
DAP-1-NO2-2-CH3 | 0.471 | 22.15 | 21.65 | 1.15 | 0.92 | 26.30 | 0.830 | 53.84 |
DAP-1-NO2-2-CH=CH2 | 0.447 | 26.12 | 22.18 | 3.63 | 2.03 | 177.81 | 0.696 | 61.29 |
DAP-1-NO2-2-NO2 | −0.172 | 128.43 | 23.35 | 9.12 | 3.20 | 338.22 | 0.761 | 57.68 |
DAP-1-NO2-2-OCH3 | 0.340 | 43.80 | 22.54 | 5.32 | 1.83 | 150.96 | 1.401 | 22.08 |
DAP-1-NO2-2-SH | 0.497 | 17.85 | 21.72 | 1.47 | 0.96 | 30.96 | 1.557 | 13.40 |
DAP-2-CH=CH2-1-CH2NO2 | 0.353 | 41.65 | 21.63 | 1.09 | 0.95 | 30.41 | 0.898 | 50.06 |
DAP-2-CH=CH2-1-CH3 | 0.529 | 12.56 | 21.56 | 0.74 | 0.90 | 23.70 | 1.366 | 24.03 |
DAP-2-CH=CH2-1-NO2 | 0.399 | 34.05 | 22.53 | 5.27 | 1.67 | 128.49 | 1.166 | 35.15 |
DAP-2-CH=CH2-1-OCH3 | 0.602 | 0.50 | 21.79 | 1.80 | 0.94 | 28.08 | 1.393 | 22.53 |
DAP-2-CH=CH2-1-SH | 0.543 | 10.25 | 21.59 | 0.89 | 0.84 | 14.38 | 1.459 | 18.85 |
Molecule | logHL | Decreasing (%) | logKOA | Increasing (%) | Freq. | Energy Gap (a.u.) | Increasing (%) |
---|---|---|---|---|---|---|---|
DAP | 3.895 | 0.00 | 8.032 | 0.00 | 17.30 | 0.203 | 0.00 |
DAP-2-CH2NO2 | 3.875 | 0.51 | 6.282 | −21.79 | 9.38 | 0.195 | −3.89 |
DAP-1-NO2-2-CH2C6H5 | 3.643 | 6.47 | 6.902 | −14.07 | 12.33 | 0.154 | −23.84 |
DAP-1-NO2-2-CH2CH3 | 3.678 | 5.57 | 7.121 | −11.34 | 12.94 | 0.156 | −22.97 |
DAP-1-NO2-2-CH2NO2 | 3.624 | 6.96 | 6.936 | −13.65 | 7.75 | 0.154 | −23.91 |
DAP-1-NO2-2-NO2 | 3.620 | 7.06 | 7.087 | −11.77 | 21.69 | 0.127 | −37.42 |
DAP-1-NO2-2-OCH3 | 3.527 | 9.45 | 7.523 | −6.34 | 11.70 | 0.175 | −13.40 |
DAP-2-CH=CH2-1-NO2 | 3.434 | 11.84 | 7.748 | −3.54 | 20.13 | 0.162 | −20.26 |
Site 1 | Site 2 | Site 1 and 2 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Group | Molecule | Volume | Increasing (%) | logP | Increasing (%) | Coupling Value (%) | Volume | Increasing (%) | logP | Increasing (%) | Coupling Value (%) | Volume | Increasing (%) | logP | Increasing (%) | Coupling Value (%) |
DMP | 1.0 | 0.00 | 1.54 | 0 | 0.00 | 1.0 | 0.00 | 1.54 | 0.00 | 0.00 | 2.0 | 0.00 | 1.54 | 0.00 | 0.00 | |
DAP | 1.0 | 0.00 | 3.06 | 0 | 0.00 | 1.0 | 0.00 | 3.06 | 0.00 | 0.00 | 2.0 | 0.00 | 3.06 | 0.00 | 0.00 | |
–CH3 | DMP-1-CH3-2-CH2NO2 | 15.0 | 1400.00 | 60.0 | 5900.00 | 75.0 | 3650.00 | 1.30 | −15.58 | 828.85 | ||||||
DMP-1-CH3-2-NO2 | 15.0 | 1400.00 | 46.0 | 4500.00 | 61.0 | 2950.00 | 0.84 | −45.45 | 655.14 | |||||||
DAP-1-NO2-2-CH3 | 46.0 | 4500.00 | 15.0 | 1400.00 | 61.0 | 2950.00 | 2.77 | −9.48 | 671.29 | |||||||
DAP-2-CH=CH2-1-CH3 | 27.0 | 2600.00 | 15.0 | 1400.00 | 42.0 | 2000.00 | 3.75 | 22.55 | 468.12 | |||||||
–CH2CH3 | DAP-1-NO2-2-CH2CH3 | 46.0 | 4500.00 | 29.1 | 2810.00 | 75.1 | 3655.00 | 3.18 | 3.92 | 838.76 | ||||||
–CH2C6H5 | DAP-1-NO2-2-CH2C6H5 | 46.0 | 4500.00 | 91.1 | 9010.00 | 137.1 | 6755.00 | 4.37 | 42.81 | 1566.12 | ||||||
–NO2 | DMP-1-NO2 | 46.0 | 4500.00 | 0.56 | −63.64 | 1001.93 | ||||||||||
DMP-1-CH3-2-NO2 | 15.0 | 1400.00 | 46.0 | 4500.00 | 61.0 | 2950.00 | 0.84 | −45.45 | 655.14 | |||||||
DAP-2-NO2 | 46.0 | 4500.00 | 2.93 | −4.25 | 1028.59 | |||||||||||
DAP-1-NO2-2-CH2C6H5 | 46.0 | 4500.00 | 91.1 | 9010.00 | 137.1 | 6755.00 | 4.37 | 42.81 | 1566.12 | |||||||
DAP-1-NO2-2-CH2CH2CH3 | 46.0 | 4500.00 | 43.1 | 4210.00 | 89.1 | 4355.00 | 3.60 | 17.65 | 1005.22 | |||||||
DAP-1-NO2-2-CH2CH3 | 46.0 | 4500.00 | 29.1 | 2810.00 | 75.1 | 3655.00 | 3.18 | 3.92 | 838.76 | |||||||
DAP-1-NO2-2-CH2NO2 | 46.0 | 4500.00 | 60.0 | 5900.00 | 106.0 | 5200.00 | 2.38 | −22.22 | 1180.82 | |||||||
DAP-1-NO2-2-CH3 | 46.0 | 4500.00 | 15.0 | 1400.00 | 61.0 | 2950.00 | 2.77 | −9.48 | 671.29 | |||||||
DAP-1-NO2-2-CH=CH2 | 46.0 | 4500.00 | 27.0 | 2600.00 | 73.0 | 3550.00 | 2.91 | −4.90 | 810.75 | |||||||
DAP-1-NO2-2-NO2 | 46.0 | 4500.00 | 46.0 | 4500.00 | 92.0 | 4500.00 | 2.28 | −25.49 | 1019.05 | |||||||
DAP-1-NO2-2-OCH3 | 46.0 | 4500.00 | 31.0 | 3000.00 | 77.0 | 3750.00 | 1.96 | −35.95 | 842.61 | |||||||
DAP-1-NO2-2-SH | 46.0 | 4500.00 | 33.1 | 3210.00 | 79.1 | 3855.00 | 2.43 | −20.59 | 873.55 | |||||||
DAP-2-CH=CH2-1-NO2 | 27.0 | 2600.00 | 46.0 | 4500.00 | 73.0 | 3550.00 | 2.91 | −4.90 | 810.75 | |||||||
–CH2NO2 | DMP-1-CH2NO2 | 60.0 | 5900.00 | 1.01 | −34.42 | 1335.65 | ||||||||||
DMP-1-CH3-2-CH2NO2 | 15.0 | 1400.00 | 60.0 | 5900.00 | 75.0 | 3650.00 | 1.30 | −15.58 | 828.85 | |||||||
DAP-1-CH2NO2 | 60.0 | 5900.00 | 2.85 | −6.86 | 1348.02 | |||||||||||
DAP-2-CH2NO2 | 60.0 | 5900.00 | 3.04 | −0.65 | 1350.81 | |||||||||||
DAP-1-NO2-2-CH2NO2 | 46.0 | 4500.00 | 60.0 | 5900.00 | 106.0 | 5200.00 | 2.38 | −22.22 | 1180.82 | |||||||
DAP-2-CH=CH2-1-CH2NO2 | 27.0 | 2600.00 | 60.0 | 5900.00 | 87.0 | 4250.00 | 3.37 | 10.13 | 977.80 | |||||||
–SH | DAP-1-SH | 33.1 | 3210.00 | 2.55 | −16.67 | 727.61 | ||||||||||
DAP-2-SH | 33.1 | 3210.00 | 3.09 | 0.98 | 735.53 | |||||||||||
DAP-1-NO2-2-SH | 46.0 | 4500.00 | 33.1 | 3210.00 | 79.1 | 3855.00 | 2.43 | −20.59 | 873.55 | |||||||
DAP-2-CH=CH2-1-SH | 27.0 | 2600.00 | 33.1 | 3210.00 | 60.1 | 2905.00 | 3.07 | 0.33 | 665.39 | |||||||
–OCH3 | DAP-1-NO2-2-OCH3 | 46.0 | 4500.00 | 31.0 | 3000.00 | 77.0 | 3750.00 | 1.96 | −35.95 | 842.61 | ||||||
DAP-2-CH=CH2-1-OCH3 | 27.0 | 2600.00 | 31.0 | 3000.00 | 58.0 | 2800.00 | 2.60 | −15.03 | 634.45 | |||||||
–CH=CH2 | DAP-1-NO2-2-CH=CH2 | 46.0 | 4500.00 | 27.0 | 2600.00 | 73.0 | 3550.00 | 2.91 | −4.90 | 810.75 | ||||||
DAP-2-CH=CH2-1-CH2NO2 | 27.0 | 2600.00 | 60.0 | 5900.00 | 87.0 | 4250.00 | 3.37 | 10.13 | 977.80 | |||||||
DAP-2-CH=CH2-1-CH3 | 27.0 | 2600.00 | 15.0 | 1400.00 | 42.0 | 2000.00 | 3.75 | 22.55 | 468.12 | |||||||
DAP-2-CH=CH2-1-NO2 | 27.0 | 2600.00 | 46.0 | 4500.00 | 73.0 | 3550.00 | 2.91 | −4.90 | 810.75 | |||||||
DAP-2-CH=CH2-1-OCH3 | 27.0 | 2600.00 | 31.0 | 3000.00 | 58.0 | 2800.00 | 2.60 | −15.03 | 634.45 | |||||||
DAP-2-CH=CH2-1-SH | 27.0 | 2600.00 | 33.1 | 3210.00 | 60.1 | 2905.00 | 3.07 | 0.33 | 665.39 |
Group | Comprehensive Effect (%) | Group Properties (%) | Flame Retardancy (%) | Biotoxicity (%) | Concentration (%) | Weighted Comprehensive Effect (%) |
---|---|---|---|---|---|---|
–CH3 | 29.23 | 655.85 | 1.48 | 31.86 | 38.04 | 21.56 |
–CH2CH3 | 39.67 | 838.76 | 5.49 | 157.95 | 17.58 | 54.86 |
–CH2C6H5 | 50.25 | 1566.12 | 5.83 | 127.81 | 34.26 | 50.95 |
–NO2 | 45.42 | 941.61 | 4.43 | 134.29 | 40.26 | 54.14 |
–CH2NO2 | 58.79 | 1170.32 | 4.29 | 125.79 | 56.72 | 56.47 |
–SH | 12.56 | 750.52 | 1.36 | 32.12 | 16.85 | 15.23 |
–OCH3 | 22.15 | 738.53 | 3.56 | 89.52 | 22.31 | 34.97 |
–CH=CH2 | 20.86 | 727.88 | 2.24 | 67.15 | 35.32 | 31.63 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Zhao, C.; Na, H. A Modified 3D-QSAR Model Based on Ideal Point Method and Its Application in the Molecular Modification of Plasticizers with Flame Retardancy and Eco-Friendliness. Polymers 2020, 12, 1942. https://doi.org/10.3390/polym12091942
Zhang H, Zhao C, Na H. A Modified 3D-QSAR Model Based on Ideal Point Method and Its Application in the Molecular Modification of Plasticizers with Flame Retardancy and Eco-Friendliness. Polymers. 2020; 12(9):1942. https://doi.org/10.3390/polym12091942
Chicago/Turabian StyleZhang, Haigang, Chengji Zhao, and Hui Na. 2020. "A Modified 3D-QSAR Model Based on Ideal Point Method and Its Application in the Molecular Modification of Plasticizers with Flame Retardancy and Eco-Friendliness" Polymers 12, no. 9: 1942. https://doi.org/10.3390/polym12091942
APA StyleZhang, H., Zhao, C., & Na, H. (2020). A Modified 3D-QSAR Model Based on Ideal Point Method and Its Application in the Molecular Modification of Plasticizers with Flame Retardancy and Eco-Friendliness. Polymers, 12(9), 1942. https://doi.org/10.3390/polym12091942