A Stimulus-Responsive Polymer Composite Surface with Magnetic Field-Governed Wetting and Photocatalytic Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Magnetic Grass Coatings
2.2. Methods of Characterization
3. Results
3.1. Characterization of the PDMS Matrix Material
3.2. Preparation and Surface Morphologies of Magnetoresponsive Grass Coatings
3.3. Wetting Properties of Magnetic Grass Coatings
3.4. Magnetic Field-Tailored Photocatalytic Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Janovak, L.; Tallósy, S.P.; Sztakó, M.; Deak, A.; Bitó, T.; Buzas, N.; Bartfai, G.; Dékany, I. Synthesis of pH-sensitive copolymer thin solid films embedded with silver nanoparticles for controlled release and their fungicide properties. J. Drug Deliv. Sci. Technol. 2014, 24, 628–636. [Google Scholar] [CrossRef]
- Yang, M.; Yuan, Z.; Liu, J.; Fang, Z.; Fang, L.; Yu, D.; Li, Q. Photoresponsive Actuators Built from Carbon-Based Soft Materials. Adv. Opt. Mater. 2019, 7, 1900069. [Google Scholar] [CrossRef]
- Sénéchal, V.; Saadaoui, H.; Rodriguez-Hernandez, J.; Drummond, C. Electrowetting of Weak Polyelectrolyte-Coated Surfaces. Langmuir 2017, 33, 4996–5005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Song, C.; Yu, X.; Liu, L.; Han, Y.; Chen, J.; Fu, J. Thermo-responsive hydrogels with tunable transition temperature crosslinked by multifunctional graphene oxide nanosheets. Compos. Sci. Technol. 2017, 151, 139–146. [Google Scholar] [CrossRef]
- Fu, Q.; Rama Rao, G.V.; Basame, S.B.; Keller, D.J.; Artyushkova, K.; Fulghum, J.E.; López, G.P. Reversible Control of Free Energy and Topography of Nanostructured Surfaces. J. Am. Chem. Soc. 2004, 126, 8904–8905. [Google Scholar] [CrossRef]
- Zhang, D.; Cheng, Z.; Kang, H.; Yu, J.; Liu, Y.; Jiang, L. A Smart Superwetting Surface with Responsivity in Both Surface Chemistry and Microstructure. Angew. Chem. Int. Ed. 2018, 57, 3701–3705. [Google Scholar] [CrossRef]
- Ma, W.; Wang, H. Magnetically driven motile superhydrophobic sponges for efficient oil removal. Appl. Mater. Today 2019, 15, 263–266. [Google Scholar] [CrossRef]
- Sedlacik, M.; Mrlik, M.; Babayan, V.; Pavlinek, V. Magnetorheological elastomers with efficient electromagnetic shielding. Compos. Struct. 2016, 135, 199–204. [Google Scholar] [CrossRef]
- Ounnunkad, K.; Patten, H.V.; Velický, M.; Farquhar, A.K.; Brooksby, P.A.; Downard, A.J.; Dryfe, R.A.W. Electrowetting on conductors: Anatomy of the phenomenon. Faraday Discuss. 2017, 199, 49–61. [Google Scholar] [CrossRef] [Green Version]
- Han, M.S.; Zhang, X.Y.; Li, L.; Peng, C.; Bao, L.; Ou, E.C.; Xiong, Y.Q.; Xu, W.J. Dual-switchable surfaces between hydrophobic and superhydrophobic fabricated by the combination of click chemistry and RAFT. Express Polym. Lett. 2014, 8, 528–542. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Wang, J.; Zhang, X.; Song, W.; Wang, S. Tunable multi-stage wettability and adhesion force on polymer brushes triggered by temperature and pH. Sci. China Mater. 2019, 62, 597–603. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Guo, J.; Ma, X.; Peng, X.; Qiu, Z.; Ying, J.; Wang, J. Smart PDMS sponge with switchable pH-responsive wetting surface for oil/water separation. New J. Chem. 2017, 41, 8940–8946. [Google Scholar] [CrossRef]
- Tian, D.; Zhang, N.; Zheng, X.; Hou, G.; Tian, Y.; Du, Y.; Jiang, L.; Dou, S.X. Fast Responsive and Controllable Liquid Transport on a Magnetic Fluid/Nanoarray Composite Interface. ACS Nano 2016, 10, 6220–6226. [Google Scholar] [CrossRef]
- Sorokin, V.V.; Sokolov, B.O.; Stepanov, G.V.; Kramarenko, E.Y. Controllable hydrophobicity of magnetoactive elastomer coatings. J. Magn. Magn. Mater. 2018, 459, 268–271. [Google Scholar] [CrossRef]
- Lee, S.; Yim, C.; Kim, W.; Jeon, S. Magnetorheological Elastomer Films with Tunable Wetting and Adhesion Properties. ACS Appl. Mater. Interfaces 2015, 7, 19853–19856. [Google Scholar] [CrossRef]
- Huang, Y.; Stogin, B.B.; Sun, N.; Wang, J.; Yang, S.; Wong, T.-S. A Switchable Cross-Species Liquid Repellent Surface. Adv. Mater. 2017, 29, 1604641. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Wu, L.; Li, G. Magnetically Responsive Superhydrophobic Surface: In Situ Reversible Switching of Water Droplet Wettability and Adhesion for Droplet Manipulation. ACS Appl. Mater. Interfaces 2018, 10, 20150–20158. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, L.; Levänen, E. Superhydrophobic surfaces for the reduction of bacterial adhesion. RSC Adv. 2013, 3, 12003. [Google Scholar] [CrossRef]
- Deák, Á.; Janovák, L.; Csapó, E.; Ungor, D.; Pálinkó, I.; Puskás, S.; Ördög, T.; Ricza, T.; Dékány, I. Layered double oxide (LDO) particle containing photoreactive hybrid layers with tunable superhydrophobic and photocatalytic properties. Appl. Surf. Sci. 2016, 389, 294–302. [Google Scholar] [CrossRef]
- Merai, L.; Deak, A.; Sebok, D.; Csapo, E.; Kolumban, T.S.; Hopp, B.; Dekany, I.; Janovak, L. Photoreactive composite coating with composition dependent wetting properties. Express Polym. Lett. 2018, 12, 1061–1071. [Google Scholar] [CrossRef]
- Mérai, L.; Varga, N.; Deák, Á.; Sebők, D.; Szenti, I.; Kukovecz, Á.; Kónya, Z.; Dékány, I.; Janovák, L. Preparation of photocatalytic thin films with composition dependent wetting properties and self-healing ability. Catal. Today 2019, 328, 85–90. [Google Scholar] [CrossRef]
- Veres, Á.; Rica, T.; Janovák, L.; Dömök, M.; Buzás, N.; Zöllmer, V.; Seemann, T.; Richardt, A.; Dékány, I. Silver and gold modified plasmonic TiO2 hybrid films for photocatalytic decomposition of ethanol under visible light. Catal. Today 2012, 181, 156–162. [Google Scholar] [CrossRef]
- Veres, Á.; Ménesi, J.; Juhász, Á.; Berkesi, O.; Ábrahám, N.; Bohus, G.; Oszkó, A.; Pótári, G.; Buzás, N.; Janovák, L.; et al. Photocatalytic performance of silver-modified TiO2 embedded in poly(ethyl-acrylate-co-methyl metacrylate) matrix. Colloid Polym. Sci. 2014, 292, 207–217. [Google Scholar] [CrossRef]
- Kubiak, K.J.; Wilson, M.C.T.; Mathia, T.G.; Carval, P. Wettability versus roughness of engineering surfaces. Wear 2011, 271, 523–528. [Google Scholar] [CrossRef] [Green Version]
- Drelich, J.; Chibowski, E. Superhydrophilic and Superwetting Surfaces: Definition and Mechanisms of Control. Langmuir 2010, 26, 18621–18623. [Google Scholar] [CrossRef] [PubMed]
- Sturgess, C.; Tuck, C.J.; Ashcroft, I.A.; Wildman, R.D. 3D reactive inkjet printing of polydimethylsiloxane. J. Mater. Chem. C 2017, 5, 9733–9743. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Klein, J.; Mejía, E. Catalytic Systems for the Cross-Linking of Organosilicon Polymers. Chem. Asian. J. 2017, 12, 1180–1197. [Google Scholar] [CrossRef]
- Harikishore, M.; Sandhyarani, M.; Venkateswarlu, K.; Nellaippan, T.A.; Rameshbabu, N. Effect of Ag Doping on Antibacterial and Photocatalytic Activity of Nanocrystalline TiO 2. Procedia Mater. Sci. 2014, 6, 557–566. [Google Scholar] [CrossRef] [Green Version]
- Mehdizadeh Taheri, S.; Michaelis, M.; Friedrich, T.; Förster, B.; Drechsler, M.; Römer, F.M.; Bösecke, P.; Narayanan, T.; Weber, B.; Rehberg, I.; et al. Self-assembly of smallest magnetic particles. Proc. Natl. Acad. Sci. USA 2015, 112, 14484–14489. [Google Scholar] [CrossRef] [Green Version]
- Hess, D.R. Nebulizers: Principles and performance. Respir. Care 2000, 45, 609–622. [Google Scholar]
- Steckel, H.; Eskandar, F. Factors affecting aerosol performance during nebulization with jet and ultrasonic nebulizers. Eur. J. Pharm. Sci. 2003, 19, 443–455. [Google Scholar] [CrossRef]
- Chadha, S.; Jefferson-Loveday, R.; Hussain, T. Effect of nozzle geometry on the gas dynamics and evaporation rates of Suspension High Velocity Oxy Fuel (SHVOF) thermal spray: A numerical investigation. Surf. Coat. Technol. 2019, 371, 78–89. [Google Scholar] [CrossRef]
- Ibhadon, A.; Fitzpatrick, P. Heterogeneous Photocatalysis: Recent Advances and Applications. Catalysts 2013, 3, 189–218. [Google Scholar] [CrossRef] [Green Version]
- Mejia, J.C.M.; Angeles, L.; Almanza, R. Synthesis and characterization of TiO2 porous films for heterogeneous photocatalysis. Comput. Water Energy Environ. Eng. 2014, 3, 36–40. [Google Scholar] [CrossRef] [Green Version]
- Tschirch, J.; Dillert, R.; Bahnemann, D.; Proft, B.; Biedermann, A.; Goer, B. Photodegradation of methylene blue in water, a standard method to determine the activity of photocatalytic coatings? Res. Chem. Intermed. 2008, 34, 381–392. [Google Scholar] [CrossRef]
- Houas, A. Photocatalytic degradation pathway of methylene blue in water. Appl. Catal. B Environ. 2001, 31, 145–157. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mérai, L.; Deák, Á.; Sebők, D.; Kukovecz, Á.; Dékány, I.; Janovák, L. A Stimulus-Responsive Polymer Composite Surface with Magnetic Field-Governed Wetting and Photocatalytic Properties. Polymers 2020, 12, 1890. https://doi.org/10.3390/polym12091890
Mérai L, Deák Á, Sebők D, Kukovecz Á, Dékány I, Janovák L. A Stimulus-Responsive Polymer Composite Surface with Magnetic Field-Governed Wetting and Photocatalytic Properties. Polymers. 2020; 12(9):1890. https://doi.org/10.3390/polym12091890
Chicago/Turabian StyleMérai, László, Ágota Deák, Dániel Sebők, Ákos Kukovecz, Imre Dékány, and László Janovák. 2020. "A Stimulus-Responsive Polymer Composite Surface with Magnetic Field-Governed Wetting and Photocatalytic Properties" Polymers 12, no. 9: 1890. https://doi.org/10.3390/polym12091890
APA StyleMérai, L., Deák, Á., Sebők, D., Kukovecz, Á., Dékány, I., & Janovák, L. (2020). A Stimulus-Responsive Polymer Composite Surface with Magnetic Field-Governed Wetting and Photocatalytic Properties. Polymers, 12(9), 1890. https://doi.org/10.3390/polym12091890