Improved Dimensional Stability and Mold Resistance of Bamboo via In Situ Growth of Poly(Hydroxyethyl Methacrylate-N-Isopropyl Acrylamide)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of PHN Polymer
2.3. Characterization of PHN Polymer
2.4. Preparation of PHN Treated Bamboo through In Situ Growth
2.5. Scanning Electron Microscope (SEM) Observation of PHN Polymer in Bamboo
2.6. Weight Gain and Volume Gain
2.7. Dimensional Stability Test
2.8. Mold Resistance Test
2.9. Statistical Analysis
3. Results Discussion
3.1. Effect of Synthesis Conditions on the Swelling Capacity of PHN Polymer
3.2. Formation of PHN Polymer
3.3. PHN Polymer in Bamboo
3.4. Dimensional Stability of PHN Polymer Treated Bamboo
3.5. Mold Resistance of PHN Polymer Treated Bamboo
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kaur, P.J.; Pant, K.; Satya, S.; Naik, S. Bamboo: The material of future. J. Int. J. Ser. Multidiscip. Res. 2016, 2, 27–34. [Google Scholar]
- Sutnaun, S.; Srisuwan, S.; Jindasai, P.; Cherdchim, B.; Matan, N.; Kyokong, B. Macroscopic and microscopic gradient structures of bamboo culms. Walailak J. Sci. Technol. (WJST) 2005, 2, 81–97. [Google Scholar]
- Liese, W.; Kumar, S. Bamboo Preservation Compendium; Technical report 22; International Network for Bamboo and Rattan: Beijing, China, 2003. [Google Scholar]
- Huang, S.; Jiang, Q.; Yu, B.; Nie, Y.; Ma, Z.; Ma, L. Combined chemical modification of bamboo material prepared using vinyl acetate and methyl methacrylate: Dimensional stability, chemical structure, and dynamic mechanical properties. Polymers 2019, 11, 1651. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Yang, X.; Rao, J.; Zhang, Y.; Sun, F. Improvement of bamboo properties via in situ construction of polyhydroxyethyl methylacrylate and polymethyl methylacrylate networks. BioResources 2018, 13, 6–14. [Google Scholar] [CrossRef]
- Ermeydan, M.A.; Cabane, E.; Gierlinger, N.; Koetz, J.; Burgert, I. Improvement of wood material properties via in situ polymerization of styrene into tosylated cell walls. RSC Adv. 2014, 4, 12981–12988. [Google Scholar] [CrossRef] [Green Version]
- Ermeydan, M.A.; Cabane, E.; Hass, P.; Koetz, J.; Burgert, I. Fully biodegradable modification of wood for improvement of dimensional stability and water absorption properties by poly (ε-caprolactone) grafting into the cell walls. Green Chem. 2014, 16, 3313–3321. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.; Yan, Y.; Zhang, S.; Li, J.; Wang, J. Flammability and physical–mechanical properties assessment of wood treated with furfuryl alcohol and nano-SiO 2. Eur. J. Wood Wood Prod. 2015, 73, 457–464. [Google Scholar] [CrossRef]
- Xie, Y.; Fu, Q.; Wang, Q.; Wang, H. Wood chemical modification: The state of the art of technologies and commercialization. Sci. Silvae Sin. 2012, 48, 154–163. [Google Scholar]
- Wang, Y.; Deng, L.; Xiao, Z.; Li, X.; Fan, Y.; Li, C. Preparation and properties of bamboo/polymer composites enhanced by in situ polymerization of furfuryl alcohol. Mater. Express 2019, 9, 712–722. [Google Scholar] [CrossRef]
- Sun, X.; Xie, Y.; Chen, Z.; Chen, J.; Yan, S. Advance in the Research of Modification of Waterborne Alkyd Resin. Paint. Coat. Ind. 2012, 42, 77–80. [Google Scholar]
- Cabane, E.; Keplinger, T.; Merk, V.; Hass, P.; Burgert, I. Renewable and functional wood materials by grafting polymerization within cell walls. ChemSusChem 2014, 7, 1020–1025. [Google Scholar] [CrossRef]
- Wei, L.; Lu, B.; Cui, L.; Peng, X.; Wu, J.; Li, D.; Liu, Z.; Guo, X. Folate-conjugated pH-responsive nanocarrier designed for active tumor targeting and controlled release of doxorubicin. Front. Mater. Sci. 2017, 11, 328–343. [Google Scholar] [CrossRef]
- Holban, M.; Vereştiuc, L.; Şunel, V. Three-dimensional structures based on chitosan functionalized with maleic anhydride for ophthalmic applications. Polym. Plast. Technol. Eng. 2012, 51, 425–431. [Google Scholar] [CrossRef]
- Gan, T.; Zhang, Y.; Guan, Y.J.B. In situ gelation of P (NIPAM-HEMA) microgel dispersion and its applications as injectable 3D cell scaffold. Biomacromolecules 2009, 10, 1410–1415. [Google Scholar] [CrossRef]
- Yildiz, B.; Işik, B.; Kiş, M. Thermoresponsive poly (N-isopropylacrylamide-co-acrylamide-co-2-hydroxyethyl methacrylate) hydrogels. React. Funct. Polym. 2002, 52, 3–10. [Google Scholar] [CrossRef]
- Omidian, H.; Hasherni, S.-A.; Askari, F.; Nafisi, S. Swelling and crosslink density measurements for hydrogels. Iran. J. Polym. Sci. Technol. 1994, 3, 115–119. [Google Scholar]
- Martinez-Ruvalcaba, A.; Sánchez-Díaz, J.; Becerra, F.; Cruz-Barba, L.; Gonzalez-Alvarez, A. Swelling characterization and drug delivery kinetics of polyacrylamide-co-itaconic acid/chitosan hydrogels. Express Polym. Lett. 2009, 3, 25–32. [Google Scholar] [CrossRef]
- Jain, A.; Bajpai, J.; Bajpai, A.; Mishra, A. Thermoresponsive cryogels of poly (2-hydroxyethyl methacrylate-co-N-isopropyl acrylamide)(P (HEMA-co-NIPAM)): Fabrication, characterization and water sorption study. Polym. Bull. 2019, 1–27. [Google Scholar] [CrossRef]
- Pourjavadi, A.; Ghasemzadeh, H.; Hosseinzadeh, H. Preparation and swelling behaviour of a novel anti-salt superabsorbent hydrogel based on kappa-carrageenan and sodium alginate grafted with polyacrylamide. e-Polymers 2004, 4. [Google Scholar] [CrossRef]
- He, X.; Liang, H.; Pan, C. Monte Carlo simulation of hyperbranched copolymerizations in the presence of a multifunctional initiator. Macromol. Theory Simul. 2001, 10, 196–203. [Google Scholar] [CrossRef]
- Hiremath, J.N.; Vishalakshi, B. Effect of Crosslinking on swelling behaviour of IPN hydrogels of Guar Gum & Polyacrylamide. Der Pharma Chem. 2012, 4, 946–955. [Google Scholar]
- Pourjavadi, A.; Kurdtabar, M.; Mahdavinia, G.R.; Hosseinzadeh, H. Synthesis and super-swelling behavior of a novel protein-based superabsorbent hydrogel. Polym. Bull. 2006, 57, 813–824. [Google Scholar] [CrossRef]
- Çekingen, S.K.; Saltan, F.; Yildirim, Y.; Akat, H. A novel HEMA-derived monomer and copolymers containing side-chain thiophene units: Synthesis, characterization and thermal degradation kinetics. Thermochim. Acta 2012, 546, 87–93. [Google Scholar]
- Dhumure, A.B.; Patil, A.B.; Kulkarni, A.S.; Voevodina, I.; Scandola, M.; Shinde, V.S. Thermoresponsive copolymers with pendant d-galactosyl 1, 2, 3-triazole groups: Synthesis, characterization and thermal behavior. New J. Chem. 2015, 39, 8179–8187. [Google Scholar] [CrossRef]
- Aouak, T.; Saeed, W.S.; Al-Hafi, N.M.; Al-Odayni, A.-B.; Alghamdi, A.A.; Bedja, I. Poly (2-hydroxyethylmethacrylate–co–methylmethacrylate)/Lignocaine Contact Lens Preparation, Characterization, and in vitro Release Dynamic. Polymers 2019, 11, 917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, F.; Jiang, J.; Chang, H.; Xie, L.; Deng, J.; Ma, Z.; Yuan, W.J.B. Improved single-cell culture achieved using micromolding in capillaries technology coupled with poly (HEMA). Biomicrofluidics 2015, 9, 044106. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, S.; Zeiser, M.; Hellweg, T.; Duschl, C.; Fery, A.; Möhwald, H. Temperature-Responsive Substrates: Adhesion and Mechanical Properties of PNIPAM Microgel Films and Their Potential Use as Switchable Cell Culture Substrates (Adv. Funct. Mater. 19/2010). Adv. Funct. Mater. 2010, 20. [Google Scholar] [CrossRef]
- Liu, B. Construction of Interpenetrating Network Structure in Wood and Study of its Performances; Zhejiang A&F University: Zhejiang, China, 2015. [Google Scholar]
- Yang, X.; Wu, H.; NAYEBARE Kakwara, P.; Rao, J.; Zhang, Y.; Sun, F. Preparation of crosslinked chitosan /poly (vinyl alcohol) and its construction in bamboo. J. For. Eng. 2018, 3, 57–62. [Google Scholar]
Reaction Condition | Codes | |||||||
---|---|---|---|---|---|---|---|---|
HEMA | HN61 | HN51 | HN41 | HN21 | HN11 | HN12 | NIPAM | |
HEMA: NIPAM (molar ratio) | 1:0 | 6:1 | 5:1 | 4:1 | 2:1 | 1:1 | 1:2 | 0:1 |
Concentration (wt.%) | 40 | 15 | ||||||
others | APS = 1 wt.%, GA = 1 wt.%, MBA = 1 wt.%, T = 80 °C, t = 2 h, |
Codes | Modifiers | Concentrations (wt.%) |
---|---|---|
N10 | NIPAM | 10 |
H10 | HEMA | 10 |
HN10 | HEMA–NIPAM | 10 |
HN20 | HEMA–NIPAM | 20 |
HN40 | HEMA–NIPAM | 40 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, T.; Zhang, W.; Wang, J.; Zhang, Y.; Wang, H.; Sun, F.; Cai, L. Improved Dimensional Stability and Mold Resistance of Bamboo via In Situ Growth of Poly(Hydroxyethyl Methacrylate-N-Isopropyl Acrylamide). Polymers 2020, 12, 1584. https://doi.org/10.3390/polym12071584
Liu T, Zhang W, Wang J, Zhang Y, Wang H, Sun F, Cai L. Improved Dimensional Stability and Mold Resistance of Bamboo via In Situ Growth of Poly(Hydroxyethyl Methacrylate-N-Isopropyl Acrylamide). Polymers. 2020; 12(7):1584. https://doi.org/10.3390/polym12071584
Chicago/Turabian StyleLiu, Tingsong, Wenhao Zhang, Jie Wang, Yan Zhang, Hui Wang, Fangli Sun, and Lili Cai. 2020. "Improved Dimensional Stability and Mold Resistance of Bamboo via In Situ Growth of Poly(Hydroxyethyl Methacrylate-N-Isopropyl Acrylamide)" Polymers 12, no. 7: 1584. https://doi.org/10.3390/polym12071584
APA StyleLiu, T., Zhang, W., Wang, J., Zhang, Y., Wang, H., Sun, F., & Cai, L. (2020). Improved Dimensional Stability and Mold Resistance of Bamboo via In Situ Growth of Poly(Hydroxyethyl Methacrylate-N-Isopropyl Acrylamide). Polymers, 12(7), 1584. https://doi.org/10.3390/polym12071584