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Abstract: Acetylation and in situ polymerization are two typical chemical modifications that are
used to improve the dimensional stability of bamboo. In this work, the combination of chemical
modification of vinyl acetate (VA) acetylation and methyl methacrylate (MMA) in situ polymerization
of bamboo was employed. Performances of the treated bamboo were evaluated in terms of dimensional
stability, wettability, thermal stability, chemical structure, and dynamic mechanical properties. Results
show that the performances (dimensional stability, thermal stability, and wettability) of bamboo
that was prepared via the combined pretreatment of VA and MMA (VA/MMA-B) were better than
those of raw bamboo, VA single-treated bamboo (VA-B), and MMA single-treated bamboo (MMA-B).
According to scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR)
analyses, VA and MMA were mainly grafted onto the surface of the cell wall or in the bamboo
cell lumen. The antiswelling efficiency and contact angle of VA/MMA-B increased to maximum
values of 40.71% and 107.1◦, respectively. From thermogravimetric analysis (TG/DTG curves), the
highest onset decomposition temperature (277 ◦C) was observed in VA/MMA-B. From DMA analysis,
the storage modulus (E’) of VA/MMA-B increased sharply from 15,057 Pa (untreated bamboo) to
17,909 Pa (single-treated bamboo), and the glass transition temperature was improved from 180 ◦C
(raw bamboo) to 205 ◦C (single-treated bamboo).

Keywords: bamboo; chemical modification; dimensional stability; dynamic thermodynamic; acetic
anhydride; methyl methacrylate

1. Introduction

Bamboo is an important fast-growing and renewable material, and has been widely used as raw
material to produce bamboo flooring, bamboo wood composite, bamboo building templates, and
bamboo decorative materials because of its high mechanical properties and low strength-to-weight
ratio [1,2]. However, bamboo use is highly limited by its strong hygroscopicity; specifically, the
free hydroxyl groups from bamboo cell walls result in poor dimensional stability. Currently, many
physical or chemical modification methods, such as heat treatment [3–6], in situ polymerization with
organic monomers [7–9], acetylation treatment [10–13], and modification with 1,3-dimethylol-4,5-
dihydroxyethyleneurea (DMDHEU) [14–16], have been used to improve its poor dimensional stability.

Acetylation is a conventional chemical modification method in which acetyl groups (CH3CO–)
react with hydroxyl groups (–OH) linked to the cellulose of wood/bamboo material; therefore,
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it improves the dimensional stability of bamboo [12,13,17–24]. The traditional reagents used in
wood/bamboo acetylation modification are acetic anhydride (AA), acetyl chlorides (AC), and thioacetic
acid (TA) [12,13]. However, acetylation pretreated with these reagents produces a large amount of
byproducts of strong acid, and this causes undesirable odors, strength loss, and corrosion of metal
fasteners [25,26].

Recently, vinyl acetate (VA) was developed as an environmentally friendly reagent used in
acetylation modification [23,27–30]. The byproduct produced from VA acetylation is acetaldehyde,
which has a low boiling point and is easily removed. Several researchers have reported that the
dimensional stability of wood treated via VA acetylation was much better than that of AA-treated
wood. For example, Jebrane et al. reported that the weight percentage gain (WPG) of maritime pine
after VA acetylation was 26.2%, which was higher than that of AA-treated wood (20.5%). Additionally,
the swelling of blocks treated with VA, which have a WPG above 20%, was always less puffed than
AA-treated wood [23]. Furthermore, it has been reported that the bonding strength between VA and
cellulose is better than that between AA and cellulose, and this results in a lower swelling coefficient [29].
More VA than AA enters into the voids of cell walls, thereby decreasing the volume of voids and
limiting the overall swelling of samples [28,30].

In situ polymerization of unsaturated polymer monomers (e.g., methyl methacrylate (MMA),
styrene, acrylonitrile, and acrylamide) within wood pores (e.g., vessels, tracheids, capillaries, and
ray cells) to fabricate wood polymer composites (WPCs) is another effective modification method
for strengthening the mechanical properties of wood or for protecting the wood matrix from being
attacked by water or microorganisms [31–35]. Methyl methacrylate (MMA) is one of the most important
vinyl monomers used in WPCs because it has low viscosity and is relatively inexpensive [36–40].
Matto et al. reported that pinewood samples treated via in situ polymerization of MMA resulted in
a higher retention of monomers and densification, less variation of permanent swelling, and higher
mechanical resistance [37]. Fu et al. grafted MMA onto a wood surface using the atom transfer radical
polymerization (ATRP) method, which resulted in the wood having better hydrophobicity [39]. Shang
et al. found that the macromechanical properties (bending modulus and compressive modulus) of
rattan were highly improved when MMA was grafted onto the surface of rattan [38].

As previously stated, studies reported in the literature have mainly focused individually on
VA acetylation or MMA in situ polymerization of wood [23,27,32,37,39,41,42]. These two methods
have been documented, and it has been concluded that both lead, to different extents, to improved
dimensional stability and increased decay resistance of wood. However, the combined use of these
two methods with respect to the enhancement of bamboo properties has not been reported. In this
study, the effects of chemical modification via single use of VA and MMA on dimensional stability,
chemical properties, and thermodynamic properties of bamboo were investigated. Then, a combined
chemical modification method of VA acetylation and MMA in situ polymerization was employed to
achieve a synergistic improvement in the dimensional stability and mechanical properties of bamboo.

2. Materials and Methods

2.1. Materials

Bamboo, purchased from Huzhou Ruiyi Wood Industry Co., Ltd. (Huzhou, China), was cut
into samples with dimensions of 20 mm × 20 mm × 5 mm (L ×W ×H, respectively, for dimensional
stability analysis) and 35 mm × 12 mm × 2.5 mm (L ×W ×H, respectively, for dynamic thermodynamic
analysis). Samples were oven-dried at 105 ◦C for 12 h until constant weight was obtained. The sizes
and weights of each specimen were then measured to calculate the volume (V0) and weight (W0).

2.2. Bamboo Acetylation Pretreatment

Vinyl acetate (VA) acetylation pretreatment of bamboo was carried out in a stainless steel container
equipped with a vacuum pump, pressure pump, and calcium chloride drying tube (Figure 1). First, the
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bamboo specimen and vinyl acetate/dimethylformamide solution (1:1 V/V) with 0.5% concentration of
potassium carbonate as the catalyst were added to the container. The container was then put under
vacuum to −0.09 MPa, and this was maintained for 12 h. The container was then put into an oven
and heated to 110 ◦C, which was maintained for 6 h. Finally, the acetylated samples were soaked
in flowing water for 48 h to remove unreacted reagents and byproducts; then, the samples were
dried in a vacuum oven under 0.01 MPa at 105 ◦C until a constant weight was obtained. The weight
percentage gain (WPG) and the volume bulking efficiency (VBE) were calculated using Equations (1)
and (2), respectively.

WPG =
W1 −W0

W0
(1)

VBE =
V1 −V0

V0
(2)

where W1 and V1 are respectively the absolute dry mass and volume of the samples before acetylation,
and W2 and V2 are respectively the absolute dry mass and volume of the samples after acetylation.
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2.3. In Situ Polymerization of MMA on Bamboo

In situ polymerization of bamboo–MMA composite was carried out in the same container as
mentioned above (Figure 1). First, MMA–EtOH solution (which was composed of MMA, ethanol, and
deionized water with a volume ratio of 2:1:1) was added to the container. Azobisisobuttyronitrile
(AIBN), which is an initiator with a relative molar ratio of 1:5, was then also added to the container.
Next, under vacuum/pressure cycles for 12 h, VA-acetylated samples and untreated samples were
impregnated with the MMA–EtOH solution in the container. All of the samples were then washed
to remove the residual solvent. Finally, the samples were wrapped in aluminum foil and stored for
24 h; samples were placed separately into the oven at 80 ◦C for 6 h. In the end, the VA/MMA-treated
bamboo and MMA-treated bamboo were vacuum-dried under 0.01 MPa at 105 ◦C to obtain constant
weight. The conversion rate (CR) of MMA was calculated using Equation (3):

CR =
W3 −W0

W2 −W0
(3)

where W3 is the oven-dried weight after polymerization, W2 is the wet weight of bamboo after
polymerization, and W0 is the absolute dry mass and volume of bamboo before all of the treatments.

2.4. Characterization of Raw and Pretreated Bamboo

The surface functional groups of raw and pretreated bamboo were tested using Fourier transform
infrared spectroscopy (FTIR, Nicolet Is50, Thermo Fisher Scientific, Walthan, MA, USA). The surface
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morphologies of raw and pretreated bamboo were characterized using cold field emission scanning
electron microscopy (SEM, SU8010, Hitachi, Chiyoda, Japan). The contact angles of raw and pretreated
bamboo were measured using an interfacial tension tester (OCA200, DataPhysics, Filderstadt, Germany).
The apparent contact angle was measured each second for the 5 s deposition on the surface of the
sample. The thermal stabilities of raw and pretreated bamboo were tested using a thermogravimetric
analyzer (TG-209, NETZSCH, Selb, Germany).

2.5. Dimensional Stability Analysis of Raw and Pretreated Bamboo

The dimensional stabilities of samples were evaluated using 12 specimens that were soaked in
water for cyclic soaking–drying. Water soaking (at room temperature and under ambient pressure
for 72 h) and oven-drying (103 ◦C for 24 h) were repeated three times. The weights and volumes
of each sample were measured every cycle. Furthermore, the parameters of water absorption (WA),
volume swelling efficiency (Sw), volume shrinking efficiency (Sk), and antiswelling efficiency (ASE)
were calculated using Equations (4)–(7), respectively.

WA =
Wwi −Ww0

Ww0
× 100% (4)

Sw =
Vwi −Vw0

Vw0
× 100% (5)

Sk =
Vw0 −Vwi

Vwi
× 100% (6)

ASE =
Swn − S′wn

S′wn
× 100% (7)

where Wwi and Vwi are respectively the weight and size of a bamboo block after soaking it i times, and
Ww0 and Vw0 are respectively the weight and size of a bamboo block after drying it i times. i is 1, 2,
and 3. Swn is the swelling efficiency of untreated bamboo, and S′wn is that of reacted bamboo.

2.6. Dynamic Mechanical Analysis of Raw and Pretreated Bamboo

The storage modulus (E’), loss modulus (E”), and tan delta (tan δ) of both the raw and pretreated
bamboo were recorded using a dynamic mechanical analyzer (DMA, Q800, TA Instruments, New
Castle, DE, USA). The temperature was scanned from 40 to 240 ◦C, the heating rate was 2 ◦C/min,
the frequency of the measurements was 1 Hz. Duplicate samples were measured to ensure the
reproducibility of results.

3. Results

3.1. Weight Gain Rate, Volume Bulking Efficiency, and Conversion Rate

Table 1 shows the effects of using different modification methods on the weight gain rate (WPG)
of bamboo, volume bulking efficiency (VBE) of bamboo, and conversion rate (CR) of MMA. WPG
reached a maximum of 18.95% after the combined treatment of VA and MMA, and this indicates that
more VA and MMA were fabricated on the bamboo. During the VA and MMA treatment process,
VA has an active anhydride group that reacts with hydroxyl groups of bamboo components to create
monoesters [28,29], and MMA in situ polymerizes on the surface or in a void of bamboo [23]. Ghorbani
et al. reported that the WPG of poplar wood increased from 22.71% with the single treatment of maleic
anhydride (MAN) and from 51.8% with the single treatment of MMA to 56.05% with the combined
treatment of MAN and MMA [34].
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Table 1. Weight percentage gain, volume bulking efficiency, and conversion rate of treated bamboo.

Samples Weight Percentage Gain
(%)

Volume Bulking
Efficiency (%) Conversion Rate (%)

VA-B 11.09 ± 0.56 4.25 ± 0.21 /
MMA-B 6.59 ± 0.33 3.49 ± 0.17 8.68 ± 0.43

VA/MMA-B 18.95 ± 0.95 8.66 ± 0.43 20.69 ± 1.03

Among the three chemical modification methods, the lowest value of VBE was obtained after
MMA treatment because the majority of MMA entered the voids of cell walls rather than attached onto
the surface of bamboo. In addition, the CR of MMA increased from 8.68% after MMA treatment to
20.69% after the combined treatment of VA and MMA, and this indicates that pretreating bamboo with
VA was beneficial for increasing the CR of MMA. VA treatment enhanced interactions between the
polymer and bamboo matrix, and more MMA filled the cell lumen of bamboo [41,43]. Li et al. reported
that maleic anhydride successfully activated poplar through a nucleophilic substitution reaction and
that this newly formed carboxyl group might act as a catalyst by providing a certain level of acidity
for polymerization.

3.2. Morphology Characterization

Figure 2 shows morphology characterizations of the cross-section and longitudinal section of
raw and pretreated bamboo. Compared to the raw bamboo (Figure 2A,B), the starch granules on the
surface of the bamboo cells in the cross-section disappeared after VA treatment. Also, the pits on the
parenchymal cells in the longitudinal section disappeared after VA treatment (Figure 2C,D), and this is
because of the acetylic inflation [25]. Figure 2E,F clearly shows that MMA was in situ polymerized on
the surface of the bamboo, and this is indicated by the tiny spherical granules. As seen in Figure 2G,H,
more MMA was fabricated on the surface of the bamboo after the combined treatment of VA and MMA
than was fabricated with just the VA treatment. In particular, abundant polymers filled most of the
pores and pits in the cross-section and longitudinal section. It was expected that the use of VA would
lead to penetration and swelling of the cell wall matrix and to a reduction in the number of hydroxyl
groups. Pretreating the bamboo with VA could increase the adhesion amount of MMA on bamboo and
create a cross-linked copolymer bonded onto the bamboo cell wall [32,34,37].
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3.3. FTIR Analysis

Figure 3 shows the effects of chemical modification on the surface functional groups of bamboo.
The band at 3405 cm−1 is attributed to the stretching vibration of the hydroxyl group [44]. Compared
to the spectrum for raw bamboo, the intensity of the hydroxyl group remarkably decreased in the
spectrum for the bamboo that was pretreated using VA and MMA. Hydrophilic hydroxyl groups in
bamboo are esterified by acetyl groups (CH3CO–) in VA, and some of the hydroxyl groups are replaced
in the polymer chains during the in situ polymerization process of MMA [37]. Among the three
chemical modification methods, the lowest intensity band that corresponded to the hydroxyl group
was observed in the spectrum for VA/MMA-B, and this indicates that the dimensional stability of
VA/MMA-B was probably better than that of raw bamboo, VA-B, and MMA-B. The band at 2955 cm−1

is attributed to the stretching vibration of methyl (–CH3) and methylene (–CH2–) [45,46]. Obviously,
the intensity of this band in the spectrum of VA/MMA-B is higher than that in the spectra of raw
bamboo, MMA-B, and VA-B, and this indicates that more MMA was successfully grafted onto the
bamboo cell walls after the combined treatment of VA and MMA [33,40]. The intensity of the band at
1745 cm−1 is ascribed to the stretching vibration of carbonyl groups (C=O) [47]. The intensity of the
band for carbonyl groups in the spectrum of VA/MMA-B is much stronger than that in the spectra
of raw bamboo and MMA-B, but it is slightly stronger than that in the spectrum of VA-B. This result
indicates that quite a number of carbonyl groups from both VA and MMA molecules were grafted onto
the bamboo cell walls of VA/MMA-B. Another slightly enhanced peak in the spectrum of VA/MMA-B
is the band for the ester bond (C−O) stretching vibration at 1242 cm−1 [46]. This was caused by the
successful reaction of bamboo hydroxyl groups with VA and MMA.
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All of the treated bamboo samples were also analyzed using diffuse reflectance FTIR (DRIFT)
spectroscopy to study the nonadsorbing matrix. Reflectance spectra were transformed to Kubelka–Munk
(K-M) units to minimize scattering contributions to the absorption measured [48,49]. Changes in the
relative intensities of bands in the spectra for raw or pretreated bamboo at 1740 cm−1, 1660 cm−1,
1506 cm−1, 1460 cm−1, 1422 cm−1, 1370 cm−1, 1240 cm−1, 1056 cm−1, and 899 cm−1 are given in Table 2.
These variations in relative intensities of various bands are because of varying quantities of cellulose,
hemicellulose, and lignin present in samples that were subjected to different treatments [33,50,51]. The
band intensities for VA are always higher than those of the control sample. After MMA polymerization,
the bands of VA/MMA-B for the aromatic skeletal vibrations at 1740 cm−1, 1660 cm−1, 1506 cm−1, and
1460 cm−1 increased in intensity. Likewise, the intensity of aromatic bending vibration at 1240 and
899 cm−1 increased. Regarding single MMA polymerization, the absorptions for C–H were similar
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with the raw sample and the band for C–H2 decreased. The results from DRIFT analysis indicated that
acetylation bamboo increased the weight by VA acetylation and also achieved a sufficient chemical
complex by MMA polymerization.

Table 2. DRIFT spectra analysis of raw and pretreated bamboo.

Wavenumber/(cm−1) Assignment
Peak Height of Associated Bands

Control VA/MMA-B VA-B MMA-B

1740 C=O stretching vibration 0.195 0.766 0.494 0.323

1660
H–O–H deformation vibration

and conjugated C=O
stretching vibration

0.159 0.486 0.440 0.164

1506 Aromatic skeletal 0.171 0.446 0.377 0.171

1460 C–H deformation (asymmetric)
and benzene vibration in lignin 0.190 0.421 0.457 0.176

1422 C–H deformation (asymmetric) 0.189 0.457 0.457 0.189
1370 C–H2 deformation (symmetric) 0.454 0.530 0.229 0.187

1240
C–O stretching vibration in
lignin, acetyl and carboxylic

vibration in xylan
0.180 0.587 0.470 0.248

1056 C–O stretching 0.177 0.526 0.472 0.231

899 C1 group frequency in cellulose
and hemicellulose 0.077 0.216 0.132 0.065

3.4. Dimensional Stability

Figure 4 shows the effects of chemical modification on the dimensional stability of bamboo in the
three cycles of water soaking–drying experiments. Figure 4 includes data for the volume swelling ratio,
volume shrinkage ratio, antiswelling efficiency, and water absorption. Compared to control samples,
the volume swelling ratio and volume shrinkage ratio of bamboo treated using the three chemical
modification methods all decreased, and this indicates that the dimensional stability of bamboo treated
using VA and MMA was improved. Among the three chemical modification methods, bamboo treated
with the combination of VA and MMA exhibited the best dimensional stability. The antiswelling
efficiency of VA/MMA-B reached a maximum value of 40.71%. We suggested that VA reacts with and
deactivates the hygroscopic hydroxyl groups of the cell wall polymers and thereby creates a less polar
particle surface, which is for better polymerization [30,34,40].

As reported in the literature, the hydrophilic hydroxyl groups are esterified by acetyl groups
(CH3CO–) in VA, and this leads to a decreased availability of sites for hydrogen bonding. Furthermore,
the voids of bamboo cell lumen are physically blocked via in situ polymerization of MMA, and
this hinders the interaction between hydrophilic hydroxyl groups in bamboo and water in the
environment [30,31,37]. With an increase in the number of times that the water soaking–drying
experiment was repeated, the dimensional stability of bamboo that was treated using the three chemical
modification methods decreased. This resulted in an increase in water absorption, as seen in Figure 4d.
This observation is explained by the fact that part of the covering layer that formed between the bamboo
surface and VA/MMA might be destroyed in the process of several rounds of the water soaking–drying
experiment. A reason for this may be the partial loss of the polymer and a high physical cross-linking
ratio for the treated samples during the water soaking–drying process. According to Li et al., the
ASE of Poplar–PMGM–C also decreased after the third water immersion, and this is the same as
our results [43]. Moreover, Zhang et al. indicated that the formed polymer also has a certain water
absorption and hygroscopicity because of the high water absorption of the MMA monomer, and this
may clarify our observation as well [36].
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3.5. Wettability Analysis

The wettability of raw and pretreated bamboo was evaluated using contact angle analysis (CA),
where a large contact angle corresponds to greater hydrophobicity and better dimensional stability [52].
Figure 5 shows the transient profiles of the CA data of raw and pretreated bamboo. For the untreated
samples, the initial CA was 94.3◦, and then it sharply dropped to 28.5◦ with an increase in contact time
from 1 s to 5 s. After chemical modification, the CA values of VA-B, MMA-B, and VA/MMA-B were
93.3–43.3◦, 90.7–65.2◦, and 107.1–84.9◦, respectively, with varying contact times. Similar to CA data
for raw bamboo, the CAs of treated bamboo gradually decreased with an increase in contact time.
This result might have been caused by the surface defects of bamboo, where VA and MMA were not
uniformly distributed. This defect makes it hard to obtain Young’s equilibrium CA, and the static CA
might fluctuate within a range under real conditions [53].
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Among the three chemical modification methods, VA/MMA-B had the highest CA value of
84.9–107.1◦, indicating that VA/MMA-B had the greatest hydrophobicity and best dimensional stability.
The hydrophilic functional groups were greatly reduced by VA acetylation and in situ polymerization
of MMA [23,43]. This result indicates that the combined treatment of VA and MMA is an efficient
method for improving the dimensional stability and polymer coverage of the bamboo surface [39].

3.6. TG Analysis

Figure 6 shows the thermal degradation behaviors of raw and pretreated bamboo under a nitrogen
atmosphere at a heating rate of 10 ◦C/min. According to the TG curves, the highest residual mass was
observed in raw bamboo (24.5%), followed by MMA-B (21.4%), VA-B (21.3%), and VA/MMA-B (20.4%).
The thermal stability of VA and MMA was lower than that of raw bamboo. Therefore, with an increase
in the WPG of treated bamboo, the residual mass decreased, but the weight loss rate of the treated
bamboo increased.
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According to the DTG curves, the thermal degradation process of bamboo can be divided into
three stages: the moisture evaporation stage (50–150 ◦C), fast devolatilization stage (150–450 ◦C), and
carbonization stage (450–650 ◦C) [44,46,54–56]. In the fast devolatilization stage, the peak temperatures
of the maximum weight loss for raw bamboo, MMA-B, VA-B, and VA/MMA-B were 317 ◦C, 334 ◦C,
333 ◦C, and 337 ◦C, respectively. This gradually moved toward the side of higher pyrolysis temperature
with an increase in the extent of pretreatment via the chemical modifications. This result indicates that
VA/MMA-B had enhanced thermal stability compared to all of the other samples. The esterification
reaction between VA and the hydroxy groups in bamboo resulted in an increase in the degree of the
crystallinity of cellulose, and this was in good agreement with the results from Wei et al. [51]. The
decrease in residual mass after grafting MMA was because of the presence of MMA, which degraded
more easily than bamboo [42].

3.7. Dynamic Mechanical Analysis

Variations in the dynamic storage modulus (E’), loss modulus (E”), and loss tangent (tan δ) of raw
and pretreated bamboo are shown in Figure 7. The dynamic storage modulus is widely used to assess
the load-bearing capability of a composite material [57]. The storage modulus of raw bamboo was
about 15,057 Pa. In general, the storage modulus (E’) of all of the bamboo samples decreased with
an increase in temperature. It is worth noting that the value of E’ for VA/MMA-B was the highest at
the same temperature for each of the four samples (17,909 Pa), and this indicates that the dynamic
storage modulus was enhanced after the combined pretreatment using VA and MMA. With an increase
in the concentration of acetyl and methyl groups, intermolecular hydrogen bonding was broken. A
certain number of hydroxyl groups were then regenerated, and the cellulose chains were consequently
closer [32,33,41]. It is believed that the stiffness of the bamboo fibers was enhanced, and the initial
storage modulus value of the treated samples is also reflected by this. A similar result has been reported
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by Jebrane et al. Some esterified material expands into the micropores or lumen of the bamboo cell
wall after treatment, and this results in a higher value of E’ [23].
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Figure 7b illustrates the temperature spectrum of the loss modulus (E”) for raw and pretreated
bamboo over the entire temperature range. The highest value of E” was obtained for VA-B (1275.4 Pa
at 170 ◦C), and the lowest value was for MMA-B (785.5 Pa at 220 ◦C). With an increase in the in situ
polymerization of MMA on bamboo, intermolecular friction and energy consumption of bamboo also
increased. Furthermore, a decrease in E” is consistent with some internal plasticization occurring
after polymerization, and this causes a decrease in the energy required to initiate chain mobility [58].
Researchers have reported that the thermal-softening temperature of lignin, hemicellulose, and cellulose
are 30–205 ◦C, 150–220 ◦C, and 200–250 ◦C, respectively [59,60]. The loss peak at a temperature of
200 ◦C is labeled as an α relaxation process that is derived from micro-Brownian motions of bamboo
cell wall polymers in the noncrystalline region [28,59]. After chemical modification, there was a
remarkable difference in the α relaxation process for different samples. Compared to raw bamboo, the
in situ polymerization of MMA on bamboo (MMA-B and VA/MMA-B) led to higher temperature of the
α-peak because more MMA, which has amorphous chains, was grafted onto the bamboo. However,
acetylation with VA did not significantly influence the temperature of the α-peak.

Figure 7c shows the glass transition temperature for raw and pretreated bamboo in terms of the
mechanical loss factor (tan δ). The glass transition temperature (Tg) was approximately equal to the
temperature when tan δ reached its maximum value. After in situ polymerization of MMA on bamboo,
the glass transition temperature increased from 180 ◦C for raw bamboo to 205 ◦C for VA/MMA-B and
220 ◦C for MMA-B. The increased glass transition temperature should be ascribed to the reinforcement
of polymer on bamboo as caused by the in situ polymerization of MMA in cell lumen [33]. However,
compared to the glass transition temperature for raw bamboo, a slight decrease was observed in the
glass transition temperature for VA-B (175 ◦C).
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4. Conclusions

The effects of the combined treatment with VA and MMA on dimensional stability, chemical
structure, and dynamic mechanical properties of bamboo were systematically investigated. Results
show that the dimensional stability (i.e., antiswelling efficiency and water absorption) of bamboo
after the combined treatment of VA and MMA was remarkably improved because of the decrease
in hydrophilic hydroxyl groups. VA and MMA were mainly grafted onto the surface of the cell
walls or in the bamboo cell lumen. From TG analysis, an increase in the extent of pretreatment via
chemical modifications resulted in the peak temperatures of the maximum weight loss gradually
moving toward the side of higher pyrolysis temperature. From DMA analysis, compared to untreated
and single-treated bamboo, the storage modulus (E’) of VA/MMA-B sharply increased by about 3 MPa,
and the glass transition temperature increased from 180 ◦C to 205 ◦C. At the same time, the glass
transition temperature of MMA-B was the highest (220 ◦C).
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