Potential Synergism between Novel Metal Complexes and Polymeric Brominated Flame Retardants in Polyamide 6.6
Abstract
1. Introduction
2. Experimental
2.1. Materials
2.2. Polymer Composite Compounding
2.3. Fire Testing
2.4. Thermogravimetric and TGA-FTIR Analysis
2.5. Char Analysis
2.6. Synergistic Effectivity
3. Results and Discussion
3.1. Thermogravimetric Behaviour
3.2. Fire Performance
3.3. TGA-FTIR Evolved Gas Analysis
3.4. Char Analyses
3.4.1. FTIR Analysis
3.4.2. XRF Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- McAllister, D.L. Brominated Flame Retardants: Current Issues and Future Prospects. In Proceedings of the Flame Retardants ’92, London, UK, 19–20 May 1992; Interscience Communications: London, UK, 1992; pp. 149–155. [Google Scholar]
- Wakelyn, P.J. Advances in Fire Retardant Materials; Horrocks, A.R., Price, D., Eds.; Woodhead Publishing: Cambridge, UK, 2008; pp. 188–212. [Google Scholar]
- Horrocks, A.R. Flame retardant and environmental issues. In Update on Flame Retardant Textiles: State of the Art, Environmental Issues and Innovative Solutions; Alongi, J., Horrocks, A.R., Carosio, F., Malucelli, G., Eds.; Smithers Rapra: Shawbury, UK, 2013; pp. 207–238. [Google Scholar]
- European Chemicals Bureau. European Union Risk Assessment Report for Bis(Pentabromodiphenyl) Ether; European Chemicals Bureau, Office for Official Publications of the European Communities, Luxembourg: 2003. Available online: https://echa.europa.eu/documents/10162/6434698/orats_final_rar_bispentabromophenylether_en.pdf (accessed on 10 July 2020).
- United States Environmental Protection Agency. An Alternatives Assessment for the Flame Retardant Decabromodiphenyl Ether (DecaBDE), Final Report. January 2014. Available online: https://www.epa.gov/sites/production/files/2014-05/documents/decabde_final.pdf (accessed on 10 July 2020).
- 3/227 of 9 February 2017 Amending Annex XVII to Regulation (EC) No 1907/2006 of the European Parliament and of the Council Concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) as Regards Bis(Pentabromophenyl)Ether. The European Parliament and of the Council, 2017.
- Horrocks, A.R. Flame retardant/resistant coatings and laminates. In Advances in Flame Retardant Materials; Horrocks, A.R., Price, D., Eds.; Woodhead Publishing: Cambridge, UK, 2008; pp. 159–187. [Google Scholar]
- de Wit, C.A.; Herzke, D.; Vorkamp, K. Brominated flame retardants in the Arctic environment—Trends and new candidates. Sci. Total Environ. 2010, 408, 2018–2885. [Google Scholar] [CrossRef] [PubMed]
- National Academy of Sciences. Toxicological Risks of Selected Flame-Retardant Chemicals; Sub-Committee on Flame-Retardant Chemicals of the United States National Research Council: Washington, DC, USA; National Academy Press: Washington, DC, USA, 2000. [Google Scholar]
- Chaplin, D.; Brown, S.C. Flamtard—A new range of flame and smoke retardants. In Flame Retardants ’90; Interscience Communications: London, UK, 1990; pp. 114–125. [Google Scholar]
- Cusack, P.A.; Hornsby, P. Zinc Stannate-coated Filler: Novel flame retardant materials and smoke suppressants for polymeric materials. J. Vinyl Addit. Technol. 1999, 5, 21–30. [Google Scholar] [CrossRef]
- Horrocks, A.R.; Smart, G.; Price, D.; Kandola, B. Zinc stannates as alternative synergists in selected flame retardant systems. J. Fire Sci. 2009, 27, 495–521. [Google Scholar] [CrossRef]
- Horrocks, A.R.; Smart, G.; Kandola, B.K.; Holdsworth, A.F.; Price, D. Zinc stannate interactions with flame retardants in polyamides; Part 1: Synergies with organobromine-containing flame retardants in polyamides 6 (PA6) and 6.6 (PA6.6). Polym. Degrad. Stab. 2012, 97, 2503–2510. [Google Scholar] [CrossRef]
- Horrocks, A.R.; Smart, G.; Kandola, B.; Price, D. Zinc stannate interactions with flame retardants in polyamides; Part 2: Potential synergies with non-halogen-containing flame retardants in polyamide 6 (PA6). Polym. Degrad. Stab. 2012, 94, 645–652. [Google Scholar] [CrossRef]
- Holdsworth, A.F.; Horrocks, A.R.; Kandola, B.K.; Price, D. The potential of metal oxalates as novel flame retardants and synergists for engineering polymers. Polym. Degrad. Stab. 2014, 110, 290–297. [Google Scholar] [CrossRef]
- Holdsworth, A.F.; Horrocks, A.R.; Kandola, B.K. Synthesis and thermal analytical screening of metal complexes as potential novel fire retardants in polyamide 6.6. Polym. Degrad. Stab. 2017, 144, 420–433. [Google Scholar] [CrossRef]
- Holdsworth, A.F.; Horrocks, A.R.; Kandola, B.K. Novel metal complexes as potential synergists with phosphorus based flame retardants in polyamide 6.6. Polym. Degrad. Stab. 2020, 179, 109220. [Google Scholar] [CrossRef]
- Weil, E.D.; Levchik, S. Flame Retardants for Plastics and Textiles; Hanser: Munich, Germany, 2009; pp. 88–91. [Google Scholar]
- Holdsworth, A.F. Novel Multifunctional Fire and Smoke Retardants for Engineering Polymers. Ph.D. Thesis, University of Bolton, Bolton, UK, 2014. [Google Scholar]
- Schaffer, M.A.; Marchildon, E.K.; McAuley, K.B.; Cunningham, M.F. Thermal non-oxidative degradation of nylon 6,6. JMS Rev.-Macromol. Chem. Phys. 2000, C40, 233–272. [Google Scholar] [CrossRef]
- Lewin, M.; Weil, E.D. Mechanisms and modes of action in flame retardancy of polymers. In Fire Retardant Materials; Horrocks, A.R., Price, D., Eds.; Woodhead Publishing: Cambridge, UK, 2001; pp. 31–68. [Google Scholar]
- Stec, A.A. Fire toxicity—The elephant in the room? Fire Saf. J. 2017, 19, 79–90. [Google Scholar] [CrossRef]
- El-Mazry, C.; Ben Hassine, M.; Correc, O.; Colin, X. Thermal oxidation kinetics of additive free polyamide 6-6. Polym. Degrad. Stab. 2013, 98, 22–36. [Google Scholar] [CrossRef]
- Horrocks, A.R.; Sitpalan, A.; Kandola, B.K. Design and characterisation of bicomponent polyamide 6 fibres with specific locations of each flame retardant component for enhanced flame retardancy. Polym. Test. 2019, 79, 106041. [Google Scholar] [CrossRef]
- Satchell, D.P.N.; Satchell, R.S. Quantitative aspects of the Lewis acidity of covalent metal halides and their organo derivatives. Chem. Rev. 1969, 69, 251–278. [Google Scholar] [CrossRef]
- Ismaeili, N. Mechanistic Study of Synergism of Inorganic Synergists with Flame Retardants. Ph.D. Thesis, University of Bolton, Bolton, UK, 2019. [Google Scholar]
- Kicko-Walczak, E. Flame retarded halogenated unsaturated polyester resins. Thermal decomposition study. J. Polym. Eng. 2003, 23, 149–161. [Google Scholar] [CrossRef]
Sample | PA66 | Br(BrPS) | Br(BrPBz) | MC* | TGA/DTG (Air) | |||
---|---|---|---|---|---|---|---|---|
Concentration, wt.% | T5% | Tmax, °C | R500, wt.% * | R580, wt.% | ||||
PA66 | 100.0 | 386 | 461 | 11.2 | 3.9 | |||
BrPS | 90.0 | 10.0 | 400 | 430 | 8.1 | 0.5 | ||
BrPBz | 90.0 | 10.0 | 363 | 402 | 10.6 | 1.2 | ||
AlW-BrPS | 85.0 | 10.0 | 5.0 | 374 | 423 | 15.9 (10.9) | 4.4 | |
ZnW-BrPS | 85.0 | 10.0 | 5.0 | 375 | 431 | 20.4 (15.4) | 9.6 | |
SnW-BrPS | 85.0 | 10.0 | 5.0 | 368 | 424 | 20.9 (15.9) | 10.3 | |
AlW-BrPBz | 85.0 | 10.0 | 5.0 | 367 | 405 | 15.1 (10.1) | 4.6 | |
ZnW-BrPBz | 85.0 | 10.0 | 5.0 | 358 | 404 | 26.2 (21.2) | 20.8 | |
SnW-BrPBz | 85.0 | 10.0 | 5.0 | 357 | 410 | 20.5 (15.5) | 9.2 |
Sample | Composition (%) | Flammability Parameters | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
PA66 | MC * | PolyBrFR | UL-94 *** | LOI, Vol.% | Es(LOI) | PHRR, kW/m2 | TSR m2/m2 | RPHRR % | Es(RPHRR) | |
PA66 | 100 | - | - | F | 22.6 | - | 1644 | 609 | - | - |
BrPS | 90 | - | 10 | V-2/V-2/F | 22.9 | - | 1049 | 1821 | 36.2 | - |
BrPBz | 90 | - | 10 | V-2 | 22.3 | - | 1206 | 1447 | 26.6 | - |
AlW ** | 95 | 5 | - | V-0/V-2/F | 23.0 | - | 1156 | 927 | 29.7 | - |
SnW ** | 95 | 5 | - | F/F/V-2 | 21.5 | - | 954 | 939 | 42.0 | - |
ZnW ** | 95 | 5 | - | F | 22.0 | - | 1190 | 638 | 27.6 | - |
AlW-BrPS | 85 | 5 | 10 | V-2/V-2/F | 23.3 | 1 | 999 | 1789 | 39.2 | 0.60 |
AlW-BrPBz | 85 | 5 | 10 | F/F/V-2 | 22.3 | 0 | 1174 | 1246 | 28.6 | 0.51 |
SnW-BrPS | 85 | 5 | 10 | V-2 | 26.7 | >1 | 546 | 1973 | 66.8 | 0.85 |
SnW-BrPBz | 85 | 5 | 10 | F/F/V-2 | 26.7 | >1 | 802 | 1766 | 51.2 | 0.75 |
ZnW-BrPS | 85 | 5 | 10 | V-2 | 26.2 | >1 | 485 | 949 | 70.5 | 1.11 |
ZnW-BrPBz | 85 | 5 | 10 | V-2/V-2/V-0 | 28.5 | >1 | 896 | 1186 | 45.5 | 0.84 |
PA66 **** | 100 | - | - | F | 24.5 | - | 1359 | 569 | - | - |
BrPS **** | 85.1 | - | 14.9 | V-2 | 23.8 | - | 1056 | 1730 | - | - |
BrPBz **** | 85.9 | - | 14.1 | V-2 | 23.9 | - | 990 | 1490 | 27.1 | - |
ZnS-BrPS **** | 77.8 | 7.3 | 14.9 | V-1 | 26.7 | >1 | 354 | 1473 | 74.0 | 1.20 |
ATO-BrPS **** | 79.0 | 6.1 | 14.9 | V-2 | 31.0 | >1 | 562 | 2794 | 58.6 | 0.88 |
ZnS-BrPBz **** | 78.6 | 7.3 | 14.1 | V-0 | 28.5 | >1 | 163 | 969 | 88.0 | 1.32 |
ATO-BrPBz **** | 79.8 | 6.1 | 14.1 | V-2 | 31.9 | >1 | 584 | 2707 | 57.0 | 0.80 |
Sample | CO2 (Air) | CO2 (N2) | NH3 (Air) | NH3 (N2) | CHx (Air) | CHx (N2) |
---|---|---|---|---|---|---|
Control | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
BrPS | 0.76 | 0.33 | 1.27 | 1.01 | 1.24 | 1.24 |
BrPBz | 0.77 | 0.63 | 0.97 | 1.58 | 1.43 | 2.54 |
ZnW | 1.06 | 0.92 | 1.16 | 1.24 | 1.11 | 1.34 |
SnW | 1.04 | 1.30 | 1.55 | 2.03 | 1.26 | 1.87 |
SnW-BrPS | 1.06 | 1.05 | 1.21 | 2.24 | 1.34 | 1.50 |
SnW-BrPBz | 1.09 | 0.73 | 2.01 | 2.37 | 1.51 | 1.59 |
ZnW-BrPS * | 1.06 | 0.92 | 1.28 | 1.75 | 1.32 | 0.55 |
ZnW-BrPBz * | 1.91 | 0.50 | 1.73 | 1.28 | 0.77 | 0.28 |
Sample | Br:W | Sn/Zn:W |
---|---|---|
SnW/BrPS plaque | 7.532 | 1.000 |
Char | 0.040 | 0.673 |
SnW-BrPBz plaque | 6.796 | 1.000 |
Char | 0.053 | 0.638 |
ZnW-BrPS plaque | 7.046 | 1.000 |
Char | 0.368 | 0.284 |
ZnW-BrPBz plaque | 3.842 | 1.000 |
Char | 0.210 | 0.179 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holdsworth, A.F.; Horrocks, A.R.; Kandola, B.K. Potential Synergism between Novel Metal Complexes and Polymeric Brominated Flame Retardants in Polyamide 6.6. Polymers 2020, 12, 1543. https://doi.org/10.3390/polym12071543
Holdsworth AF, Horrocks AR, Kandola BK. Potential Synergism between Novel Metal Complexes and Polymeric Brominated Flame Retardants in Polyamide 6.6. Polymers. 2020; 12(7):1543. https://doi.org/10.3390/polym12071543
Chicago/Turabian StyleHoldsworth, Alistair F., A. Richard Horrocks, and Baljinder K. Kandola. 2020. "Potential Synergism between Novel Metal Complexes and Polymeric Brominated Flame Retardants in Polyamide 6.6" Polymers 12, no. 7: 1543. https://doi.org/10.3390/polym12071543
APA StyleHoldsworth, A. F., Horrocks, A. R., & Kandola, B. K. (2020). Potential Synergism between Novel Metal Complexes and Polymeric Brominated Flame Retardants in Polyamide 6.6. Polymers, 12(7), 1543. https://doi.org/10.3390/polym12071543