Lycopene Inhibit IMQ-Induced Psoriasis-Like Inflammation by Inhibiting ICAM-1 Production in Mice
Abstract
:1. Introduction
2. Results
2.1. Adequate Dosage of Lycopene for Animals Study
2.2. IMQ Induces Psoriasis-Like Phenomena in Mice, and Lycopene Decreases the Severity of Symptom Appearance
2.3. Lycopene Decreases the Serious Epidermis Hyperplasia in IMQ-Treated Mice
2.4. TNF-α Induces Keratinocyte Activity and Increases Monocytic Cell Adhesion, Which Is Inhibited by Lycopene Treatment
3. Discussion
4. Materials and Methods
4.1. Drugs and Reagents
4.2. Preparation of Lycopene Gel
4.3. In Vivo Animal Study
4.3.1. Ethics Statement
4.3.2. Animal Study Protocols and Grouping
4.3.3. Measurement of Biochemical Characteristics
4.3.4. Hematoxylin and Eosin Staining
4.4. In Vitro Study
4.4.1. Cell Culture
4.4.2. HaCaT/THP-1 Cell Adhesion Assay
4.4.3. Western Blotting Analysis
4.5. Statistical Analysis
Author Contributions
Funding
Conflicts of Interest
References
- Nestle, F.O.; Kaplan, D.H.; Barker, J. Psoriasis. N. Engl. J. Med. 2009, 361, 496–509. [Google Scholar] [CrossRef]
- Prinz, J.C. The role of T cells in psoriasis. J. Eur. Acad. Dermatol. Venereol. 2003, 17, 257–270. [Google Scholar] [CrossRef]
- Puig, L. The role of IL 23 in the treatment of psoriasis. Expert Rev. Clin. Immunol. 2017, 13, 525–534. [Google Scholar] [CrossRef]
- Cabrijan, L.; Lipozencic, J.; Batinac, T.; Lenkovic, M.; Stanic Zgombic, Z. Influence of PUVA and UVB radiation on expression of ICAM-1 and VCAM-1 molecules in psoriasis vulgaris. Coll. Antropol. 2008, 32 (Suppl. 2), 53–56. [Google Scholar]
- Clark, R.A. Skin-resident T cells: The ups and downs of on site immunity. J. Investig. Dermatol. 2010, 130, 362–370. [Google Scholar] [CrossRef] [Green Version]
- Espigol-Frigole, G.; Planas-Rigol, E.; Ohnuki, H.; Salvucci, O.; Kwak, H.; Ravichandran, S.; Luke, B.; Cid, M.C.; Tosato, G. Identification of IL-23p19 as an endothelial proinflammatory peptide that promotes gp130-STAT3 signaling. Sci. Signal. 2016, 9, ra28. [Google Scholar] [CrossRef] [Green Version]
- Hwang, E.S.; Lee, H.J. Inhibitory effects of lycopene on the adhesion, invasion, and migration of SK-Hep1 human hepatoma cells. Exp. Biol. Med. (Maywood) 2006, 231, 322–327. [Google Scholar] [CrossRef]
- Bollyn, J.; Faes, J.; Fritzsche, A.; Smolders, E. Colloidal-Bound Polyphosphates and Organic Phosphates Are Bioavailable: A Nutrient Solution Study. J. Agric. Food Chem. 2017, 65, 6762–6770. [Google Scholar] [CrossRef]
- Gajendragadkar, P.R.; Hubsch, A.; Maki-Petaja, K.M.; Serg, M.; Wilkinson, I.B.; Cheriyan, J. Effects of oral lycopene supplementation on vascular function in patients with cardiovascular disease and healthy volunteers: A randomised controlled trial. PLoS ONE. 2014, 9, e99070. [Google Scholar] [CrossRef]
- Kim, J.Y.; Paik, J.K.; Kim, O.Y.; Park, H.W.; Lee, J.H.; Jang, Y.; Lee, J.H. Effects of lycopene supplementation on oxidative stress and markers of endothelial function in healthy men. Atherosclerosis 2011, 215, 189–195. [Google Scholar] [CrossRef]
- Yang, P.M.; Chen, H.Z.; Huang, Y.T.; Hsieh, C.W.; Wung, B.S. Lycopene inhibits NF-kappaB activation and adhesion molecule expression through Nrf2-mediated heme oxygenase-1 in endothelial cells. Int. J. Mol. Med. 2017, 39, 1533–1540. [Google Scholar] [CrossRef]
- Gupta, S.; Jawanda, M.K.; Arora, V.; Mehta, N.; Yadav, V. Role of Lycopene in Preventing Oral Diseases as a Nonsurgical Aid of Treatment. Int. J. Prev. Med. 2015, 6, 70. [Google Scholar] [CrossRef]
- Chen, P.; Xu, S.; Qu, J. Lycopene Protects Keratinocytes Against UVB Radiation-Induced Carcinogenesis via Negative Regulation of FOXO3a Through the mTORC2/AKT Signaling Pathway. J. Cell Biochem. 2018, 119, 366–377. [Google Scholar] [CrossRef]
- Boukamp, P.; Petrussevska, R.T.; Breitkreutz, D.; Hornung, J.; Markham, A.; Fusenig, N.E. Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J. Cell Biol. 1988, 106, 761–771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spacil, Z.; Novakova, L.; Solich, P. Analysis of phenolic compounds by high performance liquid chromatography and ultra performance liquid chromatography. Talanta 2008, 76, 189–199. [Google Scholar] [CrossRef]
- Sahebkar, A.; Serban, C.; Ursoniu, S.; Banach, M. Effect of garlic on plasma lipoprotein(a) concentrations: A systematic review and meta-analysis of randomized controlled clinical trials. Nutrition 2016, 32, 33–40. [Google Scholar] [CrossRef]
- Reiner, Z.; Catapano, A.L.; De Backer, G.; Graham, I.; Taskinen, M.R.; Wiklund, O.; Agewall, S.; Alegria, E.; Chapman, M.J.; Durrington, P.; et al. ESC/EAS Guidelines for the management of dyslipidaemias: The Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). Eur. Heart J. 2011, 32, 1769–1818. [Google Scholar]
- Silverman, M.G.; Ference, B.A.; Im, K.; Wiviott, S.D.; Giugliano, R.P.; Grundy, S.M.; Braunwald, E.; Sabatine, M.S. Association Between Lowering LDL-C and Cardiovascular Risk Reduction Among Different Therapeutic Interventions: A Systematic Review and Meta-analysis. JAMA 2016, 316, 1289–1297. [Google Scholar] [CrossRef] [Green Version]
- Khadem-Ansari, M.H.; Rasmi, Y.; Ramezani, F. Effects of red grape juice consumption on high density lipoprotein-cholesterol, apolipoprotein AI, apolipoprotein B and homocysteine in healthy human volunteers. Open Biochem. J. 2010, 4, 96–99. [Google Scholar] [CrossRef] [Green Version]
- Krinsky, N.I.; Johnson, E.J. Carotenoid actions and their relation to health and disease. Mol. Aspects Med. 2005, 26, 459–516. [Google Scholar] [CrossRef]
- Hiragun, M.; Hiragun, T.; Oseto, I.; Uchida, K.; Yanase, Y.; Tanaka, A.; Okame, T.; Ishikawa, S.; Mihara, S.; Hide, M. Oral administration of beta-carotene or lycopene prevents atopic dermatitis-like dermatitis in HR-1 mice. J. Dermatol. 2016, 43, 1188–1192. [Google Scholar] [CrossRef] [PubMed]
- Graff, R.E.; Pettersson, A.; Lis, R.T.; Ahearn, T.U.; Markt, S.C.; Wilson, K.M.; Rider, J.R.; Fiorentino, M.; Finn, S.; Kenfield, S.A.; et al. Dietary lycopene intake and risk of prostate cancer defined by ERG protein expression. Am. J. Clin. Nutr. 2016, 103, 851–860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albelda, S.M.; Smith, C.W.; Ward, P.A. Adhesion molecules and inflammatory injury. FASEB J. 1994, 8, 504–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fotis, L.; Agrogiannis, G.; Vlachos, I.S.; Pantopoulou, A.; Margoni, A.; Kostaki, M.; Verikokos, C.; Tzivras, D.; Mikhailidis, D.P.; Perrea, D. Intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 at the early stages of atherosclerosis in a rat model. In Vivo 2012, 26, 243–250. [Google Scholar]
- Lee, M.L.; To, T.; Nicholson, E.; Schrieber, L. Endothelial cell adhesion molecules in psoriasis. Australas. J. Dermatol. 1994, 35, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Palozza, P.; Parrone, N.; Simone, R.E.; Catalano, A. Lycopene in atherosclerosis prevention: An integrated scheme of the potential mechanisms of action from cell culture studies. Arch. Biochem. Biophys. 2010, 504, 26–33. [Google Scholar] [CrossRef]
- van der Fits, L.; Mourits, S.; Voerman, J.S.; Kant, M.; Boon, L.; Laman, J.D.; Cornelissen, F.; Mus, A.M.; Florencia, E.; Prens, E.P.; et al. Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis. J. Immunol. 2009, 182, 5836–5845. [Google Scholar] [CrossRef]
Time Point | Kidney Function | Liver Function | ||||
---|---|---|---|---|---|---|
BUN (mg/dL) | Creatinine (mg/dL) | ALT (IU/L) | AST (IU/L) | |||
naïve control | Star of week 1 | 24.6 ± 3.2 | 0.42 ± 0.04 | 34.2 ± 3.2 | 25.3 ± 4.6 | |
End of week 6 | 27.4 ± 2.5 | 0.34 ± 0.05 | 36.3 ± 2.7 | 24.7 ± 3.5 | ||
IMQ treatment | Non-lycopene treatment | Star of week 1 | 26.7 ± 2.2 | 0.53 ± 0.04 | 43.4 ± 4.7 | 26.3 ± 8.2 |
End of week 6 | 25.5 ± 3.5 | 0.43 ± 0.05 | 42.2 ± 4.3 | 31.5 ± 8.7 | ||
Lycopene oral treatment 0.12 mg/kg BW | Star of week 1 | 23.3 ± 3.6 | 0.54 ± 0.03 | 42.4 ± 3.8 | 26.4 ± 7.2 | |
End of week 6 | 25.4 ± 2.8 | 0.46 ± 0.03 | 43.2 ± 3.5 | 29.5 ± 4.3 | ||
Lycopene topical treatment 0.12 mg/mL | Star of week 1 | 25.4 ± 4.6 | 0.52 ± 0.04 | 41.6 ± 4.5 | 30.4 ± 6.2 | |
End of week 6 | 26.5 ± 3.2 | 0.44 ± 0.03 | 36.7 ± 4.2 | 28.3 ± 3.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shih, C.-M.; Hsieh, C.-K.; Huang, C.-Y.; Huang, C.-Y.; Wang, K.-H.; Fong, T.-H.; Trang, N.T.T.; Liu, K.-T.; Lee, A.-W. Lycopene Inhibit IMQ-Induced Psoriasis-Like Inflammation by Inhibiting ICAM-1 Production in Mice. Polymers 2020, 12, 1521. https://doi.org/10.3390/polym12071521
Shih C-M, Hsieh C-K, Huang C-Y, Huang C-Y, Wang K-H, Fong T-H, Trang NTT, Liu K-T, Lee A-W. Lycopene Inhibit IMQ-Induced Psoriasis-Like Inflammation by Inhibiting ICAM-1 Production in Mice. Polymers. 2020; 12(7):1521. https://doi.org/10.3390/polym12071521
Chicago/Turabian StyleShih, Chun-Ming, Chi-Kun Hsieh, Chien-Yu Huang, Chun-Yao Huang, Kuo-Hsien Wang, Tsorng-Harn Fong, Nguyen Thi Thu Trang, Kuan-Ting Liu, and Ai-Wei Lee. 2020. "Lycopene Inhibit IMQ-Induced Psoriasis-Like Inflammation by Inhibiting ICAM-1 Production in Mice" Polymers 12, no. 7: 1521. https://doi.org/10.3390/polym12071521
APA StyleShih, C.-M., Hsieh, C.-K., Huang, C.-Y., Huang, C.-Y., Wang, K.-H., Fong, T.-H., Trang, N. T. T., Liu, K.-T., & Lee, A.-W. (2020). Lycopene Inhibit IMQ-Induced Psoriasis-Like Inflammation by Inhibiting ICAM-1 Production in Mice. Polymers, 12(7), 1521. https://doi.org/10.3390/polym12071521