Non-Isothermal Crystallisation Kinetics of Polypropylene at High Cooling Rates and Comparison to the Continuous Two-Domain pvT Model
Abstract
:1. Introduction
2. Experiments
2.1. Materials
2.2. Differential Scanning Calorimeter (DSC)
2.3. Flash DSC Measurements
3. Results
3.1. Avrami Exponent at High Cooling Rates
3.2. Hammami Model
3.3. Non-Isothermal Induction Time
3.4. Application of the Hammami Model
4. Continuous Two-Domain pvT Model
5. Conclusions and Outlook
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CTD | Continuous two-domain pvT model by Wang et al. |
DSC | Differential scanning calorimetry |
HL | Hoffman–Lauritzen theory |
iPP | Isotactic polypropylene |
MFR | Melt flow rate |
pvT | Correlations between pressure, specific volume and temperature of polymers |
References
- Sun, X.; Su, X.; Tibbenham, P.; Mao, J.; Tao, J. The application of modified PVT data on the warpage prediction of injection molded part. J. Polym. Res. 2016, 23, 86. [Google Scholar] [CrossRef]
- Huang, C.; Hsu, Y.; Chen, B. Investigation on the internal mechanism of the deviation between numerical simulation and experiments in injection molding product development. Polym. Test. 2019, 75, 327–336. [Google Scholar] [CrossRef]
- Heidari, B.S.; Davachi, S.M.; Moghaddam, A.H.; Seyfi, J.; Hejazi, I.; Sahraeian, R.; Rashedi, H. Optimization simulated injection molding process for ultrahigh molecular weight polyethylene nanocomposite hip liner using response surface methodology and simulation of mechanical behavior. J. Mech. Behav. Biomed. Mater. 2018, 81, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Wang, J. PVT properties of polymers for injection molding. In Some Critical Issues for Injection Molding; InTech: Rijeka, Croatia, 2012; pp. 3–30. [Google Scholar]
- Rodgers, P.A. Pressure–volume–temperature relationships for polymeric liquids: A review of equations of state and their characteristic parameters for 56 polymers. J. Appl. Polym. Sci. 1993, 48, 1061–1080. [Google Scholar] [CrossRef]
- Júnior, P.; José, E.; Soares, R.D.P.; Cardozo, N.S.M. Analysis of equations of state for polymers. Polímeros 2015, 25, 277–288. [Google Scholar] [CrossRef]
- Yi, Y.X.; Zoller, P. An experimental and theoretical study of the PVT equation of state of butadiene and isoprene elastomers to 200 °C and 200 MPa. J. Polym. Sci. Part B Polym. Phys. 1993, 31, 779–788. [Google Scholar] [CrossRef]
- Song, M.; Qin, Q.; Zhu, J.; Yu, G.; Wu, S.; Jiao, M. Pressure-volume-temperature properties and thermophysical analyses of AO-60/NBR composites. Polym. Eng. Sci. 2019, 59, 949–955. [Google Scholar] [CrossRef]
- Wang, J.; Hopmann, C.; Schmitz, M.; Hohlweck, T.; Wipperfürth, J. Modeling of pvT behavior of semi-crystalline polymer based on the two-domain Tait equation of state for injection molding. Mater. Des. 2019, 183, 108149. [Google Scholar] [CrossRef]
- Wang, J.; Hopmann, C.; Röbig, M.; Hohlweck, T.; Kahve, C.; Alms, J. Continuous Two-Domain Equations of State for the Description of the Pressure-Specific Volume-Temperature Behaviour of Polymers. Polymer 2020, 12, 409. [Google Scholar] [CrossRef] [Green Version]
- Suárez, S.A.; Naranjo, A.; López, I.D.; Ortiz, J.C. Analytical review of some relevant methods and devices for the determination of the specific volume on thermoplastic polymers under processing conditions. Polym. Test. 2015, 48, 215–231. [Google Scholar] [CrossRef]
- Zuidema, H.; Peters, G.W.M.; Meijer, H.E.H. Influence of cooling rate on pVT-data of semicrystalline polymers. J. Appl. Polym. Sci. 2001, 82, 1170–1186. [Google Scholar] [CrossRef] [Green Version]
- Van Drongelen, M.; Van Erp, T.B.; Peters, G.W.M. Quantification of non-isothermal, multi-phase crystallization of isotactic polypropylene: The influence of cooling rate and pressure. Polymer 2012, 53, 4758–4769. [Google Scholar] [CrossRef]
- Xie, P.; Yang, H.; Cai, T.; Li, Z.; Li, Y.; Yang, W. Study on the pressure-volume-temperature properties of polypropylene at various cooling and shear rates. Polym. Korea 2018, 42, 167–174. [Google Scholar] [CrossRef]
- Wang, J.; Hopmann, C.; Schmitz, M.; Hohlweck, T. Process dependence of pressure-specific volume-temperature measurement for amorphous polymer: Acrylonitrile-butadiene-styrene. Polym. Test. 2020, 81, 106232. [Google Scholar] [CrossRef]
- Wang, J.; Hopmann, C.; Schmitz, M.; Hohlweck, T. Influence of measurement processes on pressure-specific volume-temperature relationships of semi-crystalline polymer: Polypropylene. Polym. Test. 2019, 78, 105992. [Google Scholar] [CrossRef]
- Avrami, M. Kinetics of phase change. II transformation-time relations for random distribution of nuclei. J. Chem. Phys. 1940, 8, 212–224. [Google Scholar] [CrossRef]
- Mubarak, Y.; Harkin-Jones, E.M.A.; Martin, P.J.; Ahmad, M. Modeling of non-isothermal crystallization kinetics of isotactic polypropylene. Polymer 2001, 42, 3171–3182. [Google Scholar] [CrossRef]
- Nakamura, K.; Katayama, K.; Amano, T. Some aspects of nonisothermal crystallization of polymers. II. Consideration of the isokinetic condition. J. Appl. Polym. Sci. 1973, 17, 1031–1041. [Google Scholar] [CrossRef]
- Ozawa, T. Kinetics of non-isothermal crystallization. Polymer 1971, 12, 150–158. [Google Scholar] [CrossRef]
- Ding, Z.; Spruiell, J.E. Interpretation of the nonisothermal crystallization kinetics of polypropylene using a power law nucleation rate function. J. Polym. Sci. Part B Polym. Phys. 1997, 35, 1077–1093. [Google Scholar] [CrossRef]
- Kamal, M.R.; Chu, E. Isothermal and nonisothermal crystallization of polyethylene. Polym. Eng. Sci. 1983, 23, 27–31. [Google Scholar] [CrossRef]
- Patel, R.M.; Spruiell, J.E. Crystallization kinetics during polymer processing–analysis of available approaches for process modeling. Polym. Eng. Sci. 1991, 31, 730–738. [Google Scholar] [CrossRef]
- Hammami, A.; Spruiell, J.E.; Mehrotra, A.K. Quiescent nonisothermal crystallization kinetics of isotactic polypropylenes. Polym. Eng. Sci. 1995, 35, 797–804. [Google Scholar] [CrossRef]
- Hao, W.; Yang, W.; Cai, H.; Huang, Y. Non-isothermal crystallization kinetics of polypropylene/silicon nitride nanocomposites. Polym. Test. 2010, 29, 527–533. [Google Scholar] [CrossRef]
- Liu, X.; Wu, Q. Non-isothermal crystallization behaviors of polyamide 6/clay nanocomposites. Eur. Polym. J. 2002, 38, 1383–1389. [Google Scholar] [CrossRef]
- Somrang, N.; Nithitanakul, M.; Grady, B.P.; Supaphol, P. Non-isothermal melt crystallization kinetics for ethylene–acrylic acid copolymers and ethylene–methyl acrylate–acrylic acid terpolymers. Eur. Polym. J. 2004, 40, 829–838. [Google Scholar] [CrossRef]
- Jiasheng, Q.; Pingsheng, H. Non-isothermal crystallization of HDPE/nano-SiO 2 composite. J. Mater. Sci. 2003, 38, 2299–2304. [Google Scholar] [CrossRef]
- Isayev, A.I.; Chan, T.W.; Shimojo, K.; Gmerek, M. Injection molding of semicrystalline polymers. I. Material characterization. J. Appl. Polym. Sci. 1995, 55, 807–819. [Google Scholar] [CrossRef]
- Spekowius, M. A New Microscale Model for the Description of Crystallization of Semi-crystalline. Ph.D. Thesis, Thermoplastics RWTH University, Aachen, Germany, 2017. [Google Scholar]
- Celli, A.; Zanotto, E.D. Polymer crystallization: Fold surface free energy determination by different thermal analysis techniques. Thermochim. Acta 1995, 269, 191–199. [Google Scholar] [CrossRef]
- Yuryev, Y.; Wood-Adams, P. A Monte Carlo Simulation of Homogeneous Crystallization in Confined Spaces: Effect of Crystallization Kinetics on the Avrami Exponent. Macromol. Theory Simul. 2010, 19, 278–287. [Google Scholar] [CrossRef]
- Wunderlich, B. Crystal nucleation, growth, annealing. In Macromolecular Physics, Volume 2; Academic Press, Inc. (London) Ltd.: London, UK, 1976; pp. 115–347. [Google Scholar]
- Falkai, V.B.V. Schmelz-und kristallisationserscheinungen bei makromolekularen substanzen. I. Kristallisationskinetische untersuchungen an isotaktischem polypropylen. Makromol. Chem. Macromol. Chem. Phys. 1960, 41, 86–109. [Google Scholar] [CrossRef]
- Jeziorny, A. Parameters characterizing the kinetics of the non-isothermal crystallization of poly (ethylene terephthalate) determined by DSC. Polymer 1978, 19, 1142–1144. [Google Scholar] [CrossRef]
- Elias, H.G. Chemische Struktur und Synthese. In Makromoleküle, Band 1; Wiley-VCH: New York, NY, USA, 1977. [Google Scholar]
- Hoffman, J.D.; Davis, G.T.; Lauritzen, J.I. The rate of crystallization of linear polymers with chain folding. In Treatise on Solid State Chemistry; Springer: Boston, MA, USA, 1976; pp. 497–614. [Google Scholar]
- Lauritzen, J.I., Jr.; Hoffman, J.D. Theory of formation of polymer crystals with folded chains in dilute solution. J. Res. Natl. Bur. Stand. Sect. A Phys. Chem. 1960, 64, 73. [Google Scholar] [CrossRef]
- Sifleet, W.L.; Dinos, N.; Collier, J.R. Unsteady-state heat transfer in a crystallizing polymer. Polym. Eng. Sci. 1973, 13, 10–16. [Google Scholar] [CrossRef]
- Godovsky, Y.K.; Slonimsky, G.L. Kinetics of polymer crystallization from the melt (calorimetric approach). J. Polym. Sci. Polym. Phys. Ed. 1974, 12, 1053–1080. [Google Scholar] [CrossRef]
Avrami Parameters | Cooling Rate (°C/min) | |||||||
---|---|---|---|---|---|---|---|---|
2 | 5 | 10 | 12.4 | 20 | 600 | 3000 | 6000 | |
3.044 | 2.983 | 3.017 | 3.073 | 3.141 | 2.580 | 2.640 | 2.678 | |
−16.87 | −13.77 | −11.88 | −11.63 | −11.01 | 0.55 | 2.42 | 3.57 | |
−0.51 | −1.14 | −1.97 | −2.41 | −3.67 | 5.54 | 120.8 | 355.6 | |
R2 | 0.9771 | 0.9734 | 0.9773 | 0.9770 | 0.9843 | 0.9693 | 0.9977 | 0.9955 |
Fit Parameters | Cooling Rate (°C/min) | |||||||
---|---|---|---|---|---|---|---|---|
2 | 5 | 10 | 12.4 | 20 | 600 | 3000 | 6000 | |
49.9 | 59.2 | 60.7 | 64.8 | 64.5 | 73.4 | 112.1 | 144.7 | |
2.81 | 3.48 | 3.48 | 3.84 | 3.72 | 3.52 | 7.46 | 11.08 | |
R2 | 0.97 | 0.97 | 0.96 | 0.97 | 0.96 | 0.91 | 0.92 | 0.94 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alms, J.; Hopmann, C.; Wang, J.; Hohlweck, T. Non-Isothermal Crystallisation Kinetics of Polypropylene at High Cooling Rates and Comparison to the Continuous Two-Domain pvT Model. Polymers 2020, 12, 1515. https://doi.org/10.3390/polym12071515
Alms J, Hopmann C, Wang J, Hohlweck T. Non-Isothermal Crystallisation Kinetics of Polypropylene at High Cooling Rates and Comparison to the Continuous Two-Domain pvT Model. Polymers. 2020; 12(7):1515. https://doi.org/10.3390/polym12071515
Chicago/Turabian StyleAlms, Jonathan, Christian Hopmann, Jian Wang, and Tobias Hohlweck. 2020. "Non-Isothermal Crystallisation Kinetics of Polypropylene at High Cooling Rates and Comparison to the Continuous Two-Domain pvT Model" Polymers 12, no. 7: 1515. https://doi.org/10.3390/polym12071515
APA StyleAlms, J., Hopmann, C., Wang, J., & Hohlweck, T. (2020). Non-Isothermal Crystallisation Kinetics of Polypropylene at High Cooling Rates and Comparison to the Continuous Two-Domain pvT Model. Polymers, 12(7), 1515. https://doi.org/10.3390/polym12071515