Development of ZSM-22/Polyethersulfone Membrane for Effective Salt Rejection
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. XRD Analysis
3.2. BET Analysis
3.3. ATR-FTIR Analysis
3.4. Morphological Analysis
3.5. Hydrophobicity and Hydrophilicity Analysis
3.6. Flux and Rejection Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dongre, R.S.; Sadasivuni, K.K.; Deshmukh, K.; Mehta, A.; Basu, S.; Meshram, J.S.; Al-Maadeed, M.A.A.; Karim, A. Natural polymer based composite membranes for water purification: A review. Polym. Plast. Technol. Mater. 2019, 58, 1. [Google Scholar] [CrossRef]
- Nqombolo, A.; Mpupa, A.; Moutloali, R.M.; Nomngongo, P.N. Wastewater Treatment Using Membrane Technology. Wastewater Water Qual. 2018, 29. [Google Scholar] [CrossRef]
- Ursino, C.; Castro-Muñoz, R.; Drioli, E.; Gzara, L.; Albeirutty, M.; Figoli, A. Progress of nanocomposite membranes for water treatment. Membranes 2018, 8, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, X.C.; Gao, B.; Liu, H.; Zhang, C.; Zhang, Y.T.; Jiang, J.; Gu, X.H. Fabrication of stainless steel hollow fiber supported NaA zeolite membrane by self-assembly of submicron seeds. Sep. Purif. Technol. 2020, 234, 10. [Google Scholar] [CrossRef]
- Malekizadeh, A.; Schenk, P.M. High flux water purification using aluminium hydroxide hydrate gels. Sci. Rep. 2017, 7, 17437. [Google Scholar] [CrossRef]
- Korolkov, I.V.; Gorin, Y.G.; Yeszhanov, A.B.; Kozlovskiy, A.L.; Zdorovets, M.V. Preparation of PET track-etched membranes for membrane distillation by photo-induced graft polymerization. Mater. Chem. Phys. 2018, 205, 55–63. [Google Scholar] [CrossRef]
- Wang, W.; Chen, X.; Zhao, C.; Zhao, B.; Dong, H.; Ma, S.; Li, L.; Chen, L.; Zhang, B. Cross-flow catalysis behavior of a PVDF/SiO2@ Ag nanoparticles composite membrane. Polymers 2018, 10, 59. [Google Scholar] [CrossRef] [Green Version]
- Bagheri, M.; Akbari, A.; Mirbagheri, S.A. Advanced control of membrane fouling in filtration systems using artificial intelligence and machine learning techniques: A critical review. Process Saf. Environ. Prot. 2019, 123, 229–252. [Google Scholar] [CrossRef]
- Akhondi, E.; Zamani, F.; Tng, K.H.; Leslie, G.; Krantz, W.B.; Fane, A.G.; Chew, J.W. The performance and fouling control of submerged hollow fiber (HF) systems: A review. Appl. Sci. 2017, 7, 765. [Google Scholar] [CrossRef]
- Li, F.; Deng, C.; Du, C.; Yang, B.; Tian, Q. Fouling mechanism and cleanability of ultrafiltration membranes modified with polydopamine-graft-PEG. Water SA 2015, 41, 448–456. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Wang, H.; Lan, Y.; Cui, Y.; Zhang, Y.; Feng, Y.; Pan, J.; Meng, M.; Wu, C. A controllable floating pDA-PVDF bead for enhanced decomposition of H2O2 and degradation of dyes. Chem. Eng. J. 2020, 385, 123907. [Google Scholar] [CrossRef]
- Korolkov, I.V.; Yeszhanov, A.B.; Zdorovets, M.V.; Gorin, Y.G.; Güven, O.; Dosmagambetova, S.S.; Khlebnikov, N.A.; Serkov, K.V.; Krasnopyorova, M.V.; Milts, O.S. Modification of PET ion track membranes for membrane distillation of low-level liquid radioactive wastes and salt solutions. Sep. Purif. Technol. 2019, 227, 115694. [Google Scholar] [CrossRef]
- Lee, S.; Kim, Y.; Park, J.; Shon, H.K.; Hong, S. Treatment of medical radioactive liquid waste using Forward Osmosis (FO) membrane process. J. Membr. Sci. 2018, 556, 238–247. [Google Scholar] [CrossRef]
- Lee, W.J.; Ng, Z.C.; Hubadillah, S.K.; Goh, P.S.; Lau, W.J.; Othman, M.H.D.; Ismail, A.F.; Hilal, N. Fouling mitigation in forward osmosis and membrane distillation for desalination. Desalination 2020, 480, 114338. [Google Scholar] [CrossRef]
- Gohari, B.; Abu-Zahra, N. Polyethersulfone Membranes Prepared with 3-Aminopropyltriethoxysilane Modified Alumina Nanoparticles for Cu (II) Removal from Water. ACS Omega 2018, 3, 10154. [Google Scholar] [CrossRef] [Green Version]
- Tshabalala, T.G.; Nxumalo, E.N.; Mamba, B.B.; Mhlanga, S.D. Synthesis of robust flexible polyethersulfone ultrafiltration membranes supported on non-woven fabrics for separation of NOM from water. Water SA 2016, 42, 621. [Google Scholar] [CrossRef] [Green Version]
- Puro, L.; Kallioinen, M.; Mänttäri, M.; Natarajan, G.; Cameron, D.C.; Nyström, M. Performance of RC and PES ultrafiltration membranes in filtration of pulp mill process waters. Desalination 2010, 264, 249. [Google Scholar] [CrossRef]
- Amy, G.; Ghaffour, N.; Li, Z.; Francis, L.; Linares, R.V.; Missimer, T.; Lattemann, S. Membrane-based seawater desalination: Present and future prospects. Desalination 2017, 401, 16. [Google Scholar] [CrossRef]
- Liu, L.-F.; Gu, X.-L.; Xie, X.; Li, R.-H.; Yu, C.-Y.; Song, X.-X.; Gao, C.-J. Modification of PSf/SPSf blended porous support for improving the reverse osmosis performance of aromatic polyamide thin film composite membranes. Polymers 2018, 10, 686. [Google Scholar] [CrossRef] [Green Version]
- Ismail, A.F.; Norida, R.; Rahman, W.A.W.A.; Matsuura, T.; Hashemifard, S.A. Preparation and characterization of hyperthin-skinned and high performances asymmetric polyethersulfone membrane for gas separation. Desalination 2011, 273, 93. [Google Scholar] [CrossRef]
- Cassano, A.; Conidi, C.; Ruby-Figueroa, R.; Castro-Muñoz, R. Nanofiltration and tight ultrafiltration membranes for the recovery of polyphenols from agro-food by-products. Int. J. Mol. Sci. 2018, 19, 351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, C.; Yu, P.; Zhao, J.; Wang, L.; Luo, Y. Preparation and characterization of NaY/PVDF hybrid ultrafiltration membranes containing silver ions as antibacterial materials. Desalination 2011, 272, 59. [Google Scholar] [CrossRef]
- Arthanareeswaran, G.; Velu, S.; Muruganandam, L. Performance enhancement of polysulfone ultrafiltration membrane by blending with polyurethane hydrophilic polymer. J. Polym. Eng. 2011, 31, 125. [Google Scholar] [CrossRef]
- Kamari, S.; Shahbazi, A. Biocompatible Fe3O4@SiO2-NH2 nanocomposite as a green nanofiller embedded in PES-nanofiltration membrane matrix for salts, heavy metal ion and dye removal: Long-term operation and reusability tests. Chemosphere 2020, 243, 125282. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, M.; Rajabzadeh, S.; Elmarghany, M.R.; Moattari, R.M.; Bakhtiari, O.; Inada, A.; Matsuyama, H.; Mohammadi, T. Preparation of a positively charged NF membrane by evaporation deposition and the reaction of PEI on the surface of the C-PES/PES blend UF membrane. Prog. Org. Coat. 2020, 141, 105570. [Google Scholar] [CrossRef]
- Li, J.-F.; Xu, Z.-L.; Yang, H.; Yu, L.-Y.; Liu, M. Effect of TiO2 nanoparticles on the surface morphology and performance of microporous PES membrane. Appl. Surf. Sci. 2009, 255, 4725. [Google Scholar] [CrossRef]
- Nguyen, T.; Roddick, F.; Fan, L. Biofouling of water treatment membranes: A review of the underlying causes, monitoring techniques and control measures. Membranes 2012, 2, 804–840. [Google Scholar] [CrossRef] [Green Version]
- Abdelrasoul, A.; Doan, H.; Lohi, A. Fouling in membrane filtration and remediation methods. In Mass Transfer-Advances in Sustainable Energy and Environment Oriented Numerical Modeling; Nakajima, H., Ed.; BoD–Books on Demand: Norderstedt, Germany, 2013; p. 195. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Zhou, Y.; Feng, Z.; Rui, X.; Zhang, T.; Zhang, Z. A review on reverse osmosis and nanofiltration membranes for water purification. Polymers 2019, 11, 1252. [Google Scholar] [CrossRef] [Green Version]
- Besharat, F.; Manteghian, M.; Gallone, G.; Lazzeri, A. Electric field induced alignment of graphene oxide nanoplatelets in polyethersulfone matrix. Nanotechnology 2020, 31, 155701. [Google Scholar] [CrossRef]
- Halakoo, E.; Feng, X. Layer-by-layer assembly of polyethyleneimine/graphene oxide membranes for desalination of high-salinity water via pervaporation. Sep. Purif. Technol. 2020, 234, 116077. [Google Scholar] [CrossRef]
- Akhair, S.S.M.; Harun, Z.; Jamalludin, M.R.; Shuhor, M.F.; Kamarudin, N.H.; Yunos, M.Z.; Ahmad, A.; Azhar, M.F.H. Polymer mixed matrix membrane with graphene oxide for humic acid performances. Chem. Eng. Trans. 2017, 56, 697. [Google Scholar] [CrossRef]
- Chu, Z.; Chen, K.; Xiao, C.; Ling, H.; Hu, Z. Performance improvement of polyethersulfone ultrafiltration membrane containing variform inorganic nano-additives. Polymer 2020, 188, 122160. [Google Scholar] [CrossRef]
- Chrzanowska, E.; Gierszewska, M.; Kujawa, J.; Raszkowska-Kaczor, A.; Kujawski, W. Development and characterization of polyamide-supported chitosan nanocomposite membranes for hydrophilic pervaporation. Polymers 2018, 10, 868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toommee, S.; Pratumpong, P. PEG-template for surface modification of zeolite: A convenient material to the design of polypropylene based composite for packaging films. Results Phys. 2018, 9, 71–77. [Google Scholar] [CrossRef]
- Yan, X.; Anguille, S.; Bendahan, M.; Moulin, P. Ionic liquids combined with membrane separation processes: A review. Sep. Purif. Technol. 2019, 222, 230. [Google Scholar] [CrossRef]
- Gebreslase, G.A.; Bousquet, G.; Bouyer, D. Review on Membranes for the Filtration of Aqueous Based Solution: Oil in Water Emulsion. J. Membr. Sci. Technol. 2018, 8, 2. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, X.; Chen, X.; Tang, K.; Meng, Q.; Shen, C.; Zhang, G. Zeolite Imidazolate Framework Membranes on Polymeric Substrates Modified with Poly (vinyl alcohol) and Alginate Composite Hydrogels. ACS Appl. Mater. Interfaces 2019, 11, 12605. [Google Scholar] [CrossRef]
- Tul Muntha, S.; Ambreen, J.; Siddiq, M.; Naeem, H.; Muhammad, S.; Khan, A. Fabrication of silica-modified zeolite-based polysulfone nanocomposite membranes: Enhanced thermal, mechanical, and antibacterial properties. J. Thermoplast. Compos. Mater. 2019, 1–24. [Google Scholar] [CrossRef]
- Liu, C.; Lee, J.; Ma, J.; Elimelech, M. Antifouling thin-film composite membranes by controlled architecture of zwitterionic polymer brush layer. Environ. Sci. Technol. 2017, 51, 2161. [Google Scholar] [CrossRef]
- Wang, B.; Jackson, E.A.; Hoff, J.W.; Dutta, P.K. Fabrication of zeolite/polymer composite membranes in a roller assembly. Microporous Mesoporous Mater. 2016, 223, 247. [Google Scholar] [CrossRef]
- da Silva, A.d.S.; da Rocha, Z.N.; Mignoni, M.L.; dos Santos, J.H.Z. Solvent-free synthesis of modified zeolites using hybrid silicas as raw material. Microporous Mesoporous Mater. 2019, 290. [Google Scholar] [CrossRef]
- Lima, R.C.; Bieseki, L.; Melguizo, P.V.; Pergher, S.B.C. Zeolite Synthesis: General Aspects. In Environmentally Friendly Zeolites; Springer: Cham, Switzerland, 2019; pp. 21–63. [Google Scholar] [CrossRef]
- Lu, P.; Gómez-Hortigüela, L.; Camblor, M.A. Synthesis of pure silica MFI zeolites using imidazolium-based long dications. A comparative study of structure-directing effects derived from a further spacer length increase. Dalton Trans. 2018, 47, 7498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maghami, M.; Abdelrasoul, A. Zeolites-Mixed-Matrix Nanofiltration Membranes for the Next Generation of Water Purification. In Nanofiltration; IntechOpen: Rijeka, Croatia, 2018. [Google Scholar] [CrossRef] [Green Version]
- Ferrarini, S.F.; Cardoso, A.M.; Paprocki, A.; Pires, M. Integrated synthesis of zeolites using coal fly ash: Element distribution in the products, washing waters and effluent. J. Braz. Chem. Soc. 2016, 27, 2034. [Google Scholar] [CrossRef]
- Hoff, T.C.; Thilakaratne, R.; Gardner, D.W.; Brown, R.C.; Tessonnier, J.-P. Thermal stability of aluminum-rich ZSM-5 zeolites and consequences on aromatization reactions. J. Phys. Chem. C 2016, 120, 20103. [Google Scholar] [CrossRef]
- Nakazawa, N.; Ikeda, T.; Hiyoshi, N.; Yoshida, Y.; Han, Q.; Inagaki, S.; Kubota, Y. A Microporous Aluminosilicate with 12-, 12-, and 8-Ring Pores and Isolated 8-Ring Channels. J. Am. Chem. Soc. 2017, 139, 7989–7997. [Google Scholar] [CrossRef] [PubMed]
- Calvo, B.; Canoira, L.; Morante, F.; Martínez-Bedia, J.M.; Vinagre, C.; García-González, J.-E.; Elsen, J.; Alcantara, R. Continuous elimination of Pb2+, Cu2+, Zn2+, H+ and NH4+ from acidic waters by ionic exchange on natural zeolites. J. Hazard. Mater. 2009, 166, 619. [Google Scholar] [CrossRef]
- Cruciani, G. Zeolites upon heating: Factors governing their thermal stability and structural changes. J. Phys. Chem. Solids 2006, 67, 1973. [Google Scholar] [CrossRef]
- Borade, R.B.; Adnot, A.; Kaliaguine, S. Acid sites in Al-ZSM-22 and Fe-ZSM-22. Zeolites 1991, 11, 710. [Google Scholar] [CrossRef]
- Maghami, M.; Abdelrasoul, A. Zeolite Mixed Matrix Membranes (Zeolite-Mmms) for Sustainable Engineering. In Zeolites and Their Applications; BoD–Books on Demand: Norderstedt, Germany, 2018; p. 115. [Google Scholar]
- Marler, B. Silica-ZSM-22: Synthesis and single crystal structure refinement. Zeolites 1987, 7, 393. [Google Scholar] [CrossRef]
- Valyocsik, E.W. Synthesis of Zeolite ZSM-22. U.S. Patent No. 4,902,406, 20 February 1990. [Google Scholar]
- Sobhani, S.; Bastani, S.; Gedde, U.W.; Sari, M.G.; Ramezanzadeh, B. Network formation and thermal stability enhancement in evolutionary crosslinked PDMS elastomers with sol-gel-formed silica nanoparticles: Comparativeness between as-received and pre-hydrolyzed TEOS. Prog. Org. Coat. 2017, 113, 117. [Google Scholar] [CrossRef]
- Colleoni, C.; Esposito, S.; Grasso, R.; Gulino, M.; Musumeci, F.; Romeli, D.; Rosace, G.; Salesi, G.; Scordino, A. Delayed luminescence induced by complex domains in water and in TEOS aqueous solutions. Phys. Chem. Chem. Phys. 2016, 18, 772. [Google Scholar] [CrossRef] [Green Version]
- Jamil, A.K.; Muraza, O.; Ahmed, M.H.; Zainalabdeen, A.; Muramoto, K.; Nakasaka, Y.; Yamani, Z.H.; Yoshikawa, T.; Masuda, T. Hydrothermally stable acid-modified ZSM-22 zeolite for selective propylene production via steam-assisted catalytic cracking of n-hexane. Microporous Mesoporous Mater. 2018, 260, 30. [Google Scholar] [CrossRef]
- Jamil, A.K.; Muraza, O.; Osuga, R.; Shafei, E.N.; Choi, K.-H.; Yamani, Z.H.; Somali, A.; Yokoi, T. Hydrothermal stability of one-dimensional pore ZSM-22 zeolite in hot water. J. Phys. Chem. C 2016, 120, 22918. [Google Scholar] [CrossRef]
- Treacy, M.M.J.; Higgins, J.B. Collection of Simulated XRD Powder Patterns for Zeolites, 5th ed.; Elsevier: Amsterdam, Holland, 2007; ISBN 978-0-444-53067-7. [Google Scholar]
- Chen, L.; Lu, P.; Yuan, Y.; Xu, L.; Zhang, X.; Xu, L. Hydrothermal synthesis of nanosized ZSM-22 and their use in the catalytic conversion of methanol. Chin. J. Catal. 2016, 37, 1381. [Google Scholar] [CrossRef]
- Verboekend, D.; Thomas, K.; Milina, M.; Mitchell, S.; Pérez-Ramírez, J.; Gilson, J.-P. Towards more efficient monodimensional zeolite catalysts: N-alkane hydro-isomerisation on hierarchical ZSM-22. Catal. Sci. Technol. 2011, 1, 1331. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, X.; Wang, Q. Fabrication of hierarchical ZSM-22 hollow sphere. Mater. Lett. 2019, 244, 96–99. [Google Scholar] [CrossRef]
- Feng, Z.; Wang, W.; Wang, Y.; Bai, X.; Su, X.; Yang, L.; Wu, W. Hydroisomerization of n-decane over the Pd/ZSM-22 bifunctional catalysts: The effects of dynamic and static crystallization to the zeolite. Microporous Mesoporous Mater. 2019, 274, 1–8. [Google Scholar] [CrossRef]
- Wu, X.; Qiu, M.; Chen, X.; Yu, G.; Yu, X.; Yang, C.; Sun, J.; Liu, Z.; Sun, Y. Enhanced n-dodecane hydroisomerization performance by tailoring acid sites on bifunctional Pt/ZSM-22 via alkaline treatment. New J. Chem. 2018, 42, 111. [Google Scholar] [CrossRef]
- Bhat, S.U.; Naikoo, R.A.; Tomar, R. One Pot Synthesis of Tetra-substituted Imidazole Derivatives by Condensation Reaction Using Zeolite H-ZSM 22 as a Heterogeneous Solid Acid Catalyst. Int. Res. J. Pure Appl. Chem. 2016, 11, 1–10. [Google Scholar] [CrossRef]
- de Sousa Júnior, L.V.; Silva, A.O.S.; Silva, B.J.B.; Alencar, S.L. Synthesis of ZSM-22 in static and dynamic system using seeds. Mod. Res. Catal. 2014, 3, 49. [Google Scholar] [CrossRef] [Green Version]
- Teketel, S.; Svelle, S.; Lillerud, K.P.; Olsbye, U. Shape-Selective Conversion of Methanol to Hydrocarbons Over 10-Ring Unidirectional-Channel Acidic H-ZSM-22. ChemCatChem 2009, 1, 78. [Google Scholar] [CrossRef] [Green Version]
- Prelina, B.; Wardana, J.; Syukriyah, Z.; Wafiroh, S.; Raharjo, Y.; Wathoniyyah, M.; Widati, A.A.; Fahmi, M.Z. Innovation of zeolite modified polyethersulfone hollow fibre membrane for haemodialysis of creatinine. Chem. Chem. Technol. 2018, 12, 331. [Google Scholar] [CrossRef]
- Moghimifar, V.; Livari, A.E.; Raisi, A.; Aroujalian, A. Enhancing the antifouling property of polyethersulfone ultrafiltration membranes using NaX zeolite and titanium oxide nanoparticles. RSC Adv. 2015, 5, 55964. [Google Scholar] [CrossRef]
- Saranya, R.; Arthanareeswaran, G.; Ismail, A.F. Enhancement of anti-fouling properties during the treatment of paper mill effluent using functionalized zeolite and activated carbon nanomaterials based ultrafiltration. J. Chem. Technol. Biotechnol. 2019, 94, 2805. [Google Scholar] [CrossRef]
- Baek, Y.; Kang, J.; Theato, P.; Yoon, J. Measuring hydrophilicity of RO membranes by contact angles via sessile drop and captive bubble method: A comparative study. Desalination 2012, 303, 23. [Google Scholar] [CrossRef]
- Conceição, I.D.D.; Silva, L.R.C.D.; Alves, T.S.; Barbosa, R.; Sousa, R.R.M.D. Investigation of the Wettability Using Contact Angle Measurements of Green Polyethylene Flat Films and Expanded Vermiculite Clay Treated by Plasma. Mater. Res. 2019, 22 (Suppl. 1), e20180918. [Google Scholar] [CrossRef] [Green Version]
- Zdorovets, M.V.; Yeszhanov, A.B.; Korolkov, I.V.; Güven, O.; Dosmagambetova, S.S.; Shlimas, D.I.; Zhatkanbayeva, Z.K.; Zhidkov, I.S.; Kharkin, P.V.; Gluchshenko, V.N. Liquid low-level radioactive wastes treatment by using hydrophobized track-etched membranes. Prog. Nucl. Energy 2020, 118, 103128. [Google Scholar] [CrossRef]
- Menzies, K.L.; Jones, L. The impact of contact angle on the biocompatibility of biomaterials. Optom. Vis. Sci. 2010, 87, 387. [Google Scholar] [CrossRef]
- Polini, A.; Yang, F. Physicochemical characterization of nanofiber composites. In Nanofiber Composites for Biomedical Applications; Elsevier: Amsterdam, Holland, 2017; pp. 97–115. [Google Scholar] [CrossRef]
- Muntha, S.T.; Siddiq, M.; Kausar, A.; Khan, A. Mixed matrix membranes of polysulfone/polyimide reinforced with modified zeolite based filler: Preparation, properties and application. Chin. J. Polym. Sci. 2018, 36, 65. [Google Scholar] [CrossRef]
- Fasano, M.; Humplik, T.; Bevilacqua, A.; Tsapatsis, M.; Chiavazzo, E.; Wang, E.N.; Asinari, P. Interplay between hydrophilicity and surface barriers on water transport in zeolite membranes. Nat. Commun. 2016, 7, 1. [Google Scholar] [CrossRef] [Green Version]
- Adamczak, M.; Kamińska, G.; Bohdziewicz, J. Preparation of Polymer Membranes by In Situ Interfacial Polymerization. Int. J. Polym. Sci. 2019, 6217924, 1–13. [Google Scholar] [CrossRef]
- Berzinis, A.P.; Bajaj, P.; Halbfinger, R.E.; Bikel, M. Composite membrane with support comprising poly (phenylene ether) and amphilphilic polymer; method of making; and separation module thereof. U.S. Patent No. 10,207,230, 19 February 2019. [Google Scholar]
- Yuan, S.; Shen, F.; Chua, C.K.; Zhou, K. Polymeric composites for powder-based additive manufacturing: Materials and applications. Prog. Polym. Sci. 2019, 91, 141. [Google Scholar] [CrossRef]
- Xu, W.; Ge, Q. Synthetic polymer materials for forward osmosis (FO) membranes and FO applications: A review. Rev. Chem. Eng. 2019, 35, 191. [Google Scholar] [CrossRef]
- Šupová, M.; Martynková, G.S.; Barabaszová, K. Effect of nanofillers dispersion in polymer matrices: A review. Sci. Adv. Mater. 2011, 3, 1. [Google Scholar] [CrossRef]
- Makhetha, T.A.; Moutloali, R.M. Antifouling properties of Cu (tpa)@ GO/PES composite membranes and selective dye rejection. J. Membr. Sci. 2018, 554, 195. [Google Scholar] [CrossRef]
- Nehache, S.; Semsarilar, M.; Deratani, A.; Quemener, D. Negatively Charged Porous Thin Film from ABA Triblock Copolymer Assembly. Polymers 2018, 10, 733. [Google Scholar] [CrossRef] [Green Version]
- Ji, Y.-L.; Gu, B.-X.; An, Q.-F.; Gao, C.-J. Recent advances in the fabrication of membranes containing “ion pairs” for nanofiltration processes. Polymers 2017, 9, 715. [Google Scholar] [CrossRef] [Green Version]
- Silva, L.S.d.; Araki, C.A.; Marcucci, S.M.P.; Silva, V.L.d.S.T.; Arroyo, P.A. Desilication of ZSM-5 and ZSM-12 Zeolites with Different Crystal Sizes: Effect on Acidity and Mesoporous Initiation. Mater. Res. 2019, 22, e320180872. [Google Scholar] [CrossRef]
- Asensi, M.A.; Corma, A.; Martínez, A.; Derewinski, M.; Krysciak, J.; Tamhankar, S.S. Isomorphous substitution in ZSM-22 zeolite. The role of zeolite acidity and crystal size during the skeletal isomerization of n-butene. Appl. Catal. A 1998, 174, 163. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chauke, N.M.; Moutloali, R.M.; Ramontja, J. Development of ZSM-22/Polyethersulfone Membrane for Effective Salt Rejection. Polymers 2020, 12, 1446. https://doi.org/10.3390/polym12071446
Chauke NM, Moutloali RM, Ramontja J. Development of ZSM-22/Polyethersulfone Membrane for Effective Salt Rejection. Polymers. 2020; 12(7):1446. https://doi.org/10.3390/polym12071446
Chicago/Turabian StyleChauke, Nyiko M., Richard M. Moutloali, and James Ramontja. 2020. "Development of ZSM-22/Polyethersulfone Membrane for Effective Salt Rejection" Polymers 12, no. 7: 1446. https://doi.org/10.3390/polym12071446
APA StyleChauke, N. M., Moutloali, R. M., & Ramontja, J. (2020). Development of ZSM-22/Polyethersulfone Membrane for Effective Salt Rejection. Polymers, 12(7), 1446. https://doi.org/10.3390/polym12071446