Highlight on the Mechanism of Linear Polyamidoamine Degradation in Water
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Synthesis of PAAs
3.2. Degradation in Water of Linear PAAs by 1H-NMR
3.2.1. Degradation Experiments at Different pH’s
3.2.2. Degradation of M-GLY at 50 °C
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ferruti, P. Poly(amidoamine)s: Past, Present, and Perspectives. J. Polym. Sci. Part A Pol. Chem. 2013, 51, 2319. [Google Scholar] [CrossRef]
- Ranucci, E.; Manfredi, A. Polyamidoamines: Versatile Bioactive Polymers with Potential for Biotechnological Applications. Chem. Afr. 2019, 2, 167. [Google Scholar] [CrossRef]
- Mather, B.D.; Viswanathan, K.; Miller, K.M.; Long, T.E. Michael addition reactions in macromolecular design for emerging technologies. Prog. Polym. Sci. 2006, 31, 487. [Google Scholar] [CrossRef]
- Ferruti, P.; Mauro, N.; Falciola, L.; Pifferi, V.; Bartoli, C.; Gazzarri, M.; Chiellini, F.; Ranucci, E. Amphoteric, Prevailingly Cationic L-Arginine Polymers of Poly(Amidoamino Acid) Structure: Synthesis, Acid/Base Properties and Preliminary Cytocompatibility and Cell-Permeating Characterizations. Macromol. Biosci. 2014, 14, 390. [Google Scholar] [CrossRef]
- Manfredi, A.; Mauro, N.; Terenzi, A.; Alongi, J.; Lazzari, F.; Ganazzoli, F.; Raffaini, G.; Ranucci, E.; Ferruti, P. Self-Ordering Secondary Structure of D- and L-Arginine-Derived Polyamidoamino Acids. ACS Macro Lett. 2017, 6, 987. [Google Scholar] [CrossRef]
- Lazzari, F.; Manfredi, A.; Alongi, J.; Mendichi, R.; Ganazzoli, F.; Raffaini, G.; Ferruti, P.; Ranucci, E. Self-Structuring in Water of Polyamidoamino Acids with Hydrophobic Side Chains Deriving from Natural α-amino acids. Polymers 2018, 10, 1261. [Google Scholar] [CrossRef]
- Lazzari, F.; Manfredi, A.; Alongi, J.; Marinotto, D.; Ferruti, P.; Ranucci, E. D-, L- and d,l-tryptophan-based polyamidoamino Acids: pH-Dependent Structuring and Fluorescent Properties. Polymers 2019, 11, 543. [Google Scholar] [CrossRef]
- Lazzari, F.; Manfredi, A.; Alongi, J.; Ganazzoli, F.; Vasile, F.; Raffaini, G.; Ferruti, P.; Ranucci, E. Hydrogen Bonding in a L-Glutamine-Based Polyamidoamino Acid and its pH-Dependent Self-Ordered Coil Conformation. Polymers 2020, 12, 881. [Google Scholar] [CrossRef]
- Lazzari, F.; Alexander, B.D.; Dalgliesh, R.M.; Alongi, J.; Ranucci, E.; Ferruti, P.; Griffiths, P.C. pH-Dependent Chiral Recognition of d- and l-Arginine Derived Polyamidoamino Acids by Self-assembled Sodium Deoxycholate. Polymers 2020, 12, 900. [Google Scholar] [CrossRef]
- Ferruti, F.; Alongi, J.; Manfredi, A.; Ranucci, E.; Ferruti, P. Controlled Synthesis of Linear Polyamidoamino Acids. Polymers 2019, 11, 1324. [Google Scholar] [CrossRef]
- Sun, M.; Wang, K.; Oupický, D. Advances in Stimulus-Responsive Polymeric Materials for Systemic Delivery of Nucleic Acids. Adv. Healthc. Mater. 2018, 7, 1701070. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, H.; Xing, H.; Lang, L.; Cheng, L.; Yang, T.; Yang, L.; Ding, P. Bioreducible poly(amido amine) copolymers derived from histamine and agmatine for highly efficient gene delivery. Polym. Int. 2019, 68, 447. [Google Scholar] [CrossRef]
- Xing, H.; Lu, M.; Yang, T.; Liu, H.; Sun, Y.; Zhao, X.; Xu, H.; Yang, L.; Ding, P. Structure-function relationships of nonviral gene vectors: Lessons from antimicrobial polymers. Acta Biomaterialia 2019, 86, 15. [Google Scholar] [CrossRef] [PubMed]
- Coué, G.; Engbersen, J.F.J. Bioreducible poly(amidoamine)s with charge-reversal properties for intracellular protein delivery. J. Control. Release 2010, 148, e9–e10. [Google Scholar] [CrossRef]
- Elzes, M.R.; Akeroyd, N.; Engbersen, J.F.J.; Paulusse, J.M.J. Disulfide-functional poly(amido amine)s with tunable degradability for gene delivery. J. Contr. Release 2016, 244, 357. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.; Noh, J.; Kim, Y.; Kim, H.; Kim, J.; Khang, G.; Lee, D. Acid-Degradable Cationic Poly(ketal amidoamine) for Enhanced RNAInterference In Vitro and In Vivo. Biomacromolecules 2013, 14, 240. [Google Scholar] [CrossRef] [PubMed]
- Gevorgyan, S.; Rossi, E.; Cappelluti, M.A.; Tocchio, A.; Martello, F.; Gerges, I.; Lenardi, C.; Milani, P.; Argentiere, S. Photocrosslinked poly(amidoamine) nanoparticles for central nervous system targeting. Colloid Surf. B 2017, 151, 197. [Google Scholar] [CrossRef]
- Martello, F.; Tocchio, A.; Tamplenizza, M.; Gerges, I.; Pistis, V.; Recenti, R.; Bortolin, M.; Del Fabbro, M.; Argentiere, S.; Milani, P.; et al. Poly(amido-amine)-based hydrogels with tailored mechanical properties and degradation rates for tissue engineering. Acta Biomater. 2014, 10, 1206. [Google Scholar] [CrossRef]
- Manfredi, A.; Carosio, F.; Ferruti, P.; Ranucci, E.; Alongi, J. Linear polyamidoamines as novel biocompatible phosphorus-free surface confined intumescent flame retardants for cotton fabrics. Polym. Degrad. Stabil. 2018, 151, 52. [Google Scholar] [CrossRef]
- Manfredi, A.; Carosio, F.; Ferruti, P.; Alongi, J.; Ranucci, E. Disulfide-containing polyamidoamines with remarkable flame retardant activity for cotton fabrics. Polym. Degrad. Stabil. 2018, 156, 1. [Google Scholar] [CrossRef]
- Alongi, J.; Ferruti, P.; Manfredi, A.; Carosio, F.; Feng, Z.; Hakkarainen, M.; Ranucci, E. Superior flame retardancy of cotton by synergistic effect of cellulose derived nano-graphene oxide carbon dots and disulphide-containing polyamidoamines. Polym. Degrad. Stab. 2019, 169, 108993. [Google Scholar] [CrossRef]
- Beduini, A.; Carosio, F.; Ferruti, P.; Ranucci, E.; Alongi, J. Sulfur-Based Copolymeric Polyamidoamines as Efficient Flame-Retardants for Cotton. Polym. Degrad. Stabil. 2019, 11, 1904. [Google Scholar] [CrossRef] [PubMed]
- Sartore, L.; Penco, M.; Della Sciucca, S.; Borsarini, G.; Ferrari, V. New carbon black composite vapor detectors based on multifunctional polymers. Sens. Actuat. B Chem. 2005, 111, 160. [Google Scholar] [CrossRef]
- Sartore, L.; Barbaglio, M.; Borgese, L.; Bontempi, E. Polymer-grafted QCM chemical sensor and application to heavy metal ions real time detection. Sens. Actuat. B Chem. 2011, 155, 538. [Google Scholar] [CrossRef]
- Sartore, L.; Barbaglio, M.; Penco, M.; Bergese, R.; Bontempi, E.; Colombi, P.; Depero, L.E. Polymer-coated quartz crystal microbalance chemical sensor for heavy cations in water. J. Nanosci. Nanotechnol. 2009, 9, 1164. [Google Scholar] [CrossRef] [PubMed]
- Sartore, L.; Dey, K. Preparation and Heavy Metal Ions Chelating Properties of Multifunctional Polymer-Grafted Silica Hybrid Materials. Adv. Mater. Sci. Eng. 2019. [Google Scholar] [CrossRef]
- Casolaro, M.; Bignotti, F.; Sartore, L.; Penco, M. The thermodynamics of basic and amphoteric poly(amido-amine)s containing peptide nitrogens as potential binding sites for metal ions. Polymer 2001, 42, 903. [Google Scholar] [CrossRef]
- Sartore, L.; Penco, M.; Bignotti, F.; Pedrotti, C.; D’Antone, S. Organic-Inorganic Hybrid Materials with Ability to Bind Metal Ions: Calorimetric Properties and Thermostability. Macromol. Symp. 2004, 218, 22. [Google Scholar] [CrossRef]
- Sartore, L.; Penco, M.; Della Sciucca, S.; D’Antone, A.; D’Antone, S. Silica-graft-polyamidoamine Hybrid Materials: Effect of Constraints on the Polymer Mobility. Macromol. Symp. 2007, 247, 162. [Google Scholar] [CrossRef]
- Danusso, F.; Ferruti, P. Synthesis of tertiary amine polymers. Polymer 1970, 11, 88. [Google Scholar] [CrossRef]
- Ranucci, E.; Spagnoli, G.; Ferruti, P.; Sgouras, D.; Duncan, R. Poly(Amidoamine)s with Potential as Drug Carriers: Degradation and Cellular Toxicity. J. Biomat. Sci. Polym. Ed. 1991, 2, 303. [Google Scholar] [CrossRef] [PubMed]
- Ferruti, P.; Ranucci, E.; Sartore, L.; Bignotti, F.; Marchisio, M.A.; Bianciardi, P.; Veronese, F.M. Recent results on functional polymers and macromonomers of interest as biomaterials or for biomaterial modification. Biomaterials 1994, 15, 1235. [Google Scholar] [CrossRef]
- Ferruti, P.; Ranucci, E.; Bigotti, F.; Sartore, L.; Bianciardi, P.; Marchisio, M.A. Degradation Behaviour of Ionic Stepwise Polyaddition Polymers of Medical Interest. J. Biomater. Sci. Polym. Ed. 1995, 6, 833. [Google Scholar] [CrossRef] [PubMed]
- Ferruti, P.; Ranucci, E.; Trotta, F.; Gianasi, E.; Evagorou, E.G.; Wasil, M.; Wilson, G.; Duncan, R. Synthesis, Characterisation and Antitumor Activity of Platinum(II) Complexes of Novel Functionalised poly(amido-amine)s. Macromol. Chem. Phys. 1999, 200, 1644. [Google Scholar] [CrossRef]
- Ferruti, P. Poly(amido-amine)s. Macromol. Synth. 1985, 9, 25. [Google Scholar]
- Zamora, R.; Delgado, R.M.; Hidalgo, F.J. Model Reactions of Acrylamide with Selected Amino Compounds. J. Agric. Food Chem. 2010, 58, 1708. [Google Scholar] [CrossRef]
- Rulev, A.Y. Aza-Michael reaction: Achievements and prospects. Russ. Chem. Rev. 2011, 80, 197. [Google Scholar] [CrossRef]
- Noordzij, G.J.; Wilsens, C.H.R.M. Cascade aza-Michael Addition-Cyclizations: Toward Renewable and Multifunctional Carboxylic Acids for Melt-Polycondensation. Front. Chem. 2019, 7, 729. [Google Scholar] [CrossRef]
- McElvain, S.M.; Rorig, K. Piperidine derivatives. XVIII. The condensation of aromatic aldehydes with 1-methyl-4-piperidone. J. Am. Chem. Soc. 1948, 70, 1820. [Google Scholar] [CrossRef]
- Wu, D.; Liu, Y.; He, C.; Chung, T.; Goh, S. Effects of chemistries of trifunctional amines on mechanisms of Michael addition polymerizations with diacrylates. Macromolecules 2004, 37, 6763. [Google Scholar] [CrossRef]
- Manfredi, A.; Ranucci, E.; Suardi, M.; Ferruti, P. Polymerization Kinetics of Poly(amidoamine)s in Different Solvents. J. Bioact. Compat. Pol. 2007, 22, 219. [Google Scholar] [CrossRef]
- Lynn, D.M.; Langer, R. Degradable Poly(β-amino esters): Synthesis, Characterization, and Self-Assembly with Plasmid DNA. J. Am. Chem. Soc. 2000, 122, 10761. [Google Scholar] [CrossRef]
- Froehling, P.; Brackman, J. Properties and applications of poly(propylene imine) dendrimers and poly(ester amide) hyperbranched polymers. Macromol. Symp. 2000, 151, 581. [Google Scholar] [CrossRef]
- Froimowicz, P.; Gandinib, A.; Strumia, M. New polyfunctional dendritic linear hybrids from terminal amine polyether oligomers (Jeffamine): Synthesis and characterization. Tetrahedron Lett. 2005, 46, 2653. [Google Scholar] [CrossRef]
- Tomalia, D.A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S. A new class of polymers: Starburst-dendritic macromolecules. Polym. J. 1985, 17, 117. [Google Scholar] [CrossRef]
- De Araújo, R.V.; da Silva Santos, S.; Ferreira, E.I.; Giarolla, J. New Advances in General Biomedical Applications of PAMAM Dendrimers. Molecules 2018, 23, 2849. [Google Scholar] [CrossRef]
- Kubasiak, L.; Tomalia, D.A. Cationic dendrimers as gene transfection vectors: Dendri-poly(amido amines) and dendripoly(propyleneimines). In Polymeric Gene Delivery: Principles and Applications; Amiji, M.M., Ed.; CRC Press: Boca Raton, FL, USA, 2005; pp. 133–158, ISBN 13: 978-0-203-50047-7. [Google Scholar]
- Magnaghi, V.; Conte, V.; Procacci, P.; Pivato, G.; Cortese, P.; Cavalli, E.; Pajardi, G.; Ranucci, E.; Fenili, F.; Manfredi, A.; et al. Biological performance of a novel biodegradable polyamidoamine hydrogel as guide for peripheral nerve regeneration. J. Biomed. Mater. Res. Part. A 2011, 98, 19. [Google Scholar] [CrossRef] [PubMed]
- Dos Reis, G.; Fenili, F.; Gianfelice, A.; Bongiorno, G.; Marchesi, D.; Scopelliti, P.E.; Borgonovo, A.; Podestà, A.; Indrieri, M.; Ranucci, E.; et al. Direct microfabrication of topographical and chemical cues for the guided growth of neural cell networks on polyamidoamine hydrogels. Macromol. Biosci. 2010, 10, 842. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.F.; Li, L.; Luo, M.X.; Yang, K.F.; Lai, G.Q.; Jiang, J.X.; Xu, L.W. Organocatalytic aza-Michael/retro-aza-Michael reaction: Pronounced chirality amplification in aza-Michael reaction and racemization via retro-aza-Michael reaction. Chirality 2011, 23, 397. [Google Scholar] [CrossRef]
- Pellis, A.; Hanson, P.A.; Comerford, J.W.; Clark, J.H.; Farmer, T.J. Enzymatic synthesis of unsaturated polyesters: Functionalization and reversibility of the aza-Michael addition of pendants. Polym. Chem. 2019, 10, 843. [Google Scholar] [CrossRef]
- Tsai, Y.; Borini Etichetti, C.M.; Di Benedetto, C.; Javier, E.; Girardini, J.E.:; Terra Martins, F.; Spanevello, R.A.; Suaárez, A.G.; Sarotti, A.M. Synthesis of Triazole Derivatives of Levoglucosenone As Promising Anticancer Agents: Effective Exploration of the Chemical Space through retro-aza-Michael//aza-Michael Isomerizations. J. Org. Chem. 2018, 83, 3516. [Google Scholar] [CrossRef]
- Ranucci, E.; Ferruti, P.; Lattanzio, E.; Manfredi, A.; Rossi, M.; Mussini, P.R.; Chiellini, F.; Bartoli, C. Acid-Base Properties of Poly(amidoamine)s. J. Polym. Sci. Part. A Pol. Chem. 2009, 47, 6977. [Google Scholar] [CrossRef]
- Amines, Diamines and Cyclic Organic Nitrogen Compounds - pKa Values. Available online: https://www.engineeringtoolbox.com/amine-diamine-pyridine-cyclic-quinoline-aminobenzene-structure-pka-carboxylic-dissociation-constant-d_1949.html (accessed on 28 May 2020).
- Talukdars, H.; Rudra, S.; Kundu, K.K. Deprotonation and transfer energetics of glycine in aqueous mixtures of urea and glycerol from emf measurements at different temperatures. Can. J. Chem. 1989, 67, 315. [Google Scholar] [CrossRef]
- Khalili, F.; Henni, A.; East, A.L.L. pKa Values of Some Piperazines at (298, 303, 313, and 323) K. J. Chem. Eng. Data 2009, 54, 2914. [Google Scholar] [CrossRef]
- Odian, G. Radical chain polymerization. In Principles of Polymerization, 4th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2004; pp. 198–349. ISBN 0-471-27400-3. [Google Scholar]
- Riazi, H.; Arabi Shamsabadi, A.; Corcoran, P.; Grady, M.C.; Rappe, A.M.; Soroush, M. On the Thermal Self-Initiation Reaction of n-Butyl Acrylate in Free-Radical Polymerization. Processes 2018, 6, 3. [Google Scholar] [CrossRef]
- Mayo, F.R. The dimerization of styrene. J. Am. Chem. Soc. 1968, 90, 1289. [Google Scholar] [CrossRef]
- Srinivasan, S.; Lee, M.W.; Grady, M.C.; Soroush, M.; Rappe, A.M. Computational Evidence for Self-Initiation in Spontaneous High-Temperature Polymerization of Methyl Methacrylate. J. Phys. Chem. A 2011, 115, 1125. [Google Scholar] [CrossRef]
Sample | Bisacrylamide Monomer | Amine Monomer | LiOH·H2O | H2O | |||
---|---|---|---|---|---|---|---|
(g) | (mmol) | (g) | (mmol) | (g) | (mmol) | (mL) | |
M-EA | 1.54 | 10 | 0.64 | 10 | - | 4.7 | |
M-GLY | 1.54 | 10 | 0.76 | 10 | 0.43 | 10 | 4.1 |
M-MP | 1.54 | 10 | 1.05 | 10 | - | 3.9 | |
B-EA | 2.09 | 10 | 0.64 | 10 | 0.43 | 10 | 4.7 |
B-GLY | 2.09 | 10 | 0.76 | 10 | 0.86 | 20 | 5.6 |
B-MP | 2.09 | 10 | 1.05 | 10 | 0.43 | 10 | 5.4 |
BP-EA | 2.00 | 10 | 0.64 | 10 | - | 4.0 | |
BP-GLY | 2.00 | 10 | 0.76 | 10 | 0.43 | 10 | 4.9 |
BP-MP | 2..00 | 10 | 1.05 | 10 | - | 4.6 |
Sample | Sample Weight (mg) | Moles of Repeat Unit (μmol) |
---|---|---|
M-EA | 8.7 | 43.6 |
M-GLY | 10.0 | 43.6 |
M-MP | 11.1 | 43.6 |
B-EA | 10.6 | 43.6 |
B-GLY | 11.9 | 43.6 |
B-MP | 13.0 | 43.6 |
BP-EA | 10.4 | 43.6 |
BP-GLY | 11.7 | 43.6 |
BP-MP | 12.8 | 43.6 |
M-EA | M-GLY | M-MP |
B-EA | B-GLY | B-MP |
BP-EA | BP-GLY | BP-MP |
Polymer | Mwa | Mnb | PD c |
---|---|---|---|
SEC | |||
M-EA | 8500 | 3000 | 2.83 |
M-GLY | 6000 | 5000 | 1.20 |
M-MP | 7500 | 6000 | 1.25 |
B-EA | 15,500 | 13,500 | 1.15 |
B-GLY | 5500 | 5000 | 1.10 |
B-MP | 34,000 | 26,000 | 1.31 |
BP-EA | 12,500 | 8500 | 1.47 |
BP-GLY | 6000 | 5000 | 1.20 |
BP-MP | 19,000 | 17,000 | 1.12 |
Sample a | kd (h−1) × 104 b | |
---|---|---|
pH 7.0 | pH 9.0 | |
M-EA | 4.00 | nd c |
M-GLY | 1.00 | 3.50 d |
M-MP | 0.49 | nd |
B-EA | 2.90 | 5.8 d |
B-GLY | 1.10 | 3.10 d |
B-MP | 0.43 | 0.43 |
BP-EA | nd | nd |
BP-GLY | nd | nd |
BP-MP | 0.75 | 0.30 |
Sample | RU a,b | A c | α | |||||||
---|---|---|---|---|---|---|---|---|---|---|
pH 4.0 | pH 7.0 | pH 9.0 | ||||||||
pKa1 | pKa2 | pKa1 | pKa2 | RU b | A c | RU | A | RU | A | |
M-EA | 8.4 | - | 10.67 d | - | 1.0 | 1.0 | 0.96 | 1.0 | 0.20 | 0.98 |
M-GLY | 1.9 | 7.7 e | 2.35 | 9.78 f | 1.0 | 1.0 | 0.83 | 1.0 | 0.05 | 0.86 |
M-MP | 3.0 | 7.1 | 5.19 | 9.46 g | 1.1 | 1.94 | 0.56 | 1.1 | 0.01 | 0.74 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arioli, M.; Manfredi, A.; Alongi, J.; Ferruti, P.; Ranucci, E. Highlight on the Mechanism of Linear Polyamidoamine Degradation in Water. Polymers 2020, 12, 1376. https://doi.org/10.3390/polym12061376
Arioli M, Manfredi A, Alongi J, Ferruti P, Ranucci E. Highlight on the Mechanism of Linear Polyamidoamine Degradation in Water. Polymers. 2020; 12(6):1376. https://doi.org/10.3390/polym12061376
Chicago/Turabian StyleArioli, Matteo, Amedea Manfredi, Jenny Alongi, Paolo Ferruti, and Elisabetta Ranucci. 2020. "Highlight on the Mechanism of Linear Polyamidoamine Degradation in Water" Polymers 12, no. 6: 1376. https://doi.org/10.3390/polym12061376
APA StyleArioli, M., Manfredi, A., Alongi, J., Ferruti, P., & Ranucci, E. (2020). Highlight on the Mechanism of Linear Polyamidoamine Degradation in Water. Polymers, 12(6), 1376. https://doi.org/10.3390/polym12061376