Synthesis and Application of New Amphiphilic Asphaltene Ionic Liquid Polymers to Demulsify Arabic Heavy Petroleum Crude Oil Emulsions
Abstract
1. Introduction
2. Experimental
2.1. Materials
2.2. Techniques
2.2.1. Preparation of Asphaltenes Carboxylic (ACA) and Acid Chlorides (As-COCl)
2.2.2. Preparation of Tetradecyl Pyridinium Bromide Ethoxylate
2.2.3. Synthesis of Amphiphilic Asphaltenes Ionic Liquid Polymers
2.3. Characterization
2.4. Application of Asphaltenes Ionic Liquids (As-ILs) as Demulsifier
3. Results and Discussion
3.1. Characterization of Amphiphilic Asphaltene ILs
3.2. Surface Activity of Amphiphilic Asphaltene PIL
3.3. Application of the Prepared AIL and AIL-2 as Demulsifier for Petroleum Crude Oil Emulsions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Loh, W.; Mohamed, R.S.; Santos, R.G. Crude Oil Asphaltenes: Colloidal Aspects. In Encyclopedia of Surface and Colloid Science; Somasundaram, P., Ed.; Taylor & Francis: New York, NY, USA, 2007; Volume 1, pp. 1–18. [Google Scholar]
- Speight, J.G. The Chemistry and Technology of Petroleum, 2nd ed.; Marcel Dekker, Inc.: New York, NY, USA, 1991; Chapter 11; pp. 350–373. [Google Scholar]
- He, L.; Lin, F.; Li, X.; Sui, H.; Xu, Z. Interfacial sciences in unconventional petroleum production: From fundamentals to applications. Chem. Soc. Rev. 2015, 44, 5446–5494. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Ramírez, F.; Ruiz-Morales, Y. Island versus archipelago architecture for asphaltenes: Polycyclic aromatic hydrocarbon dimer theoretical studies. Energy Fuels 2013, 27, 1791–1808. [Google Scholar] [CrossRef]
- Lobato, M.D.; Pedrosa, J.M.; Hortal, A.R.; Martínez-Haya, B.; Lebrón-Aguilar, R.; Lago, S. Characterization and Langmuir film properties of asphaltenes extracted from Arabian light crude oil. Colloids Surf. A Physicochem. Eng. Asp. 2007, 298, 72–79. [Google Scholar] [CrossRef]
- Ekott, E.J.; Akpabio, E.J. A review of water-in-crude oil emulsion stability, destabilization and interfacial rheology. J. Eng. Appl. Sci. 2010, 5, 447–452. [Google Scholar]
- Morales, C.; Riebel, U.; Guzmán, N.; Guerra, M. Formulation of water in paraffin emulsions. Lat. Am. Appl. Res. 2011, 41, 105–112. [Google Scholar]
- Da Silva Ramos, A.C.; Haraguchi, L.; Notrispe, F.R.; Loh, W.; Mohamed, R.S. Interfacial and colloidal behavior of asphaltenes obtained from Brazilian crude oils. J. Pet. Sci. Eng. 2001, 32, 201–216. [Google Scholar] [CrossRef]
- Salager, J.-L.; Forgiarini, A.M. Emulsion stabilization, breaking, and inversion depends upon formulation: Advantage or inconvenience in flow assurance. Energy Fuels 2012, 26, 4027–4033. [Google Scholar] [CrossRef]
- Li, L.; Xu, J.; Tinsley, J.; Adamson, D.H.; Pethica, B.A.; Huang, J.S.; Prud’homme, R.K.; Guo, X. Improvement of oil flowability by assembly of comb-type copolymers with paraffin and asphaltene. AIChE J. 2012, 58, 2254–2261. [Google Scholar] [CrossRef]
- Venkatesan, R.; Östlund, J.-A.; Chawla, H.; Wattana, P.; Nydén, M.; Fogler, H.S. The effect of asphaltenes on the gelation of waxy oils. Energy Fuels 2003, 17, 1630–1640. [Google Scholar] [CrossRef]
- Kelland, M.A. Production Chemicals for the Oil and Gas Industry; CRC Press, Taylor and Francis: Boca Raton, FL, USA, 2014; Chapter 7. [Google Scholar]
- Lowry, E.; Sedghi, M.; Goual, L. Polymers for asphaltene dispersion: Interaction mechanisms and molecular design considerations. J. Mol. Liq. 2017, 230, 589–599. [Google Scholar] [CrossRef]
- Choi, S.; Byun, D.H.; Lee, K.; Kim, J.-D.; Nho, N.S. Asphaltene precipitation with partially oxidized asphaltene from water/heavy crude oil emulsion. J. Pet. Sci. Eng. 2016, 146, 21–29. [Google Scholar] [CrossRef]
- Wiehe, I.A. Asphaltene solubility and fluid compatibility. Energy Fuels 2012, 26, 4004–4016. [Google Scholar] [CrossRef]
- Ovalles, C.; Rogel, E.; Morazan, H.; Moir, M.E. Synthesis, characterization, and mechanism of asphaltene inhibition of phosphopropoxylated asphaltenes. Fuel 2016, 180, 20–26. [Google Scholar] [CrossRef]
- Abdullah, M.M.; Al-Lohedan, H.A.; Atta, A.M. Novel magnetic iron oxide nanoparticles coated with sulfonated asphaltene as crude oil spill collectors. RSC Adv. 2016, 6, 59242–59249. [Google Scholar] [CrossRef]
- Yakubov, M.R.; Gryaznov, P.I.; Yakubova, S.G.; Tazeeva, E.G.; Mironov, N.A.; Milordov, D.V. Structural-group composition and properties of heavy oil asphaltenes modified with sulfuric acid. Pet. Sci. Technol. 2016, 34, 1805–1811. [Google Scholar] [CrossRef]
- José-Alberto, M.-H.; Jorge, A. Current knowledge and potential applications of ionic liquids in the petroleum industry. In Ionic Liquids: Applications and Perspectives; Kokorin, A., Ed.; InTech: Rijeka, Croatia, 2011; pp. 439–456. [Google Scholar] [CrossRef]
- Atta, A.M.; Al-Lohedan, H.A.; Abdullah, M.M.; ElSaeed, S.M. Application of new amphiphilic ionic liquid based on ethoxylated octadecylammonium tosylate as demulsifier and petroleum crude oil spill dispersant. J. Ind. Eng. Chem. 2016, 33, 122–130. [Google Scholar] [CrossRef]
- Ezzat, A.O.; Atta, A.M.; Al-Lohedan, H.A.; Abdullah, M.M.; Hashem, A.I. Synthesis and application of poly (ionic liquid) based on cardanol as demulsifier for heavy crude oil water emulsions. Energy Fuels 2018, 32, 214–225. [Google Scholar] [CrossRef]
- Atta, A.M.; Abdullah, M.M.; Al-Lohedan, H.A.; Gaffer, A.K. Synthesis and application of amphiphilic poly (ionic liquid) dendron from cashew nut shell oil as a green oilfield chemical for heavy petroleum crude oil emulsion. Energy Fuels 2018, 32, 4873–4884. [Google Scholar] [CrossRef]
- Atta, A.M.; Ezzat, A.O.; Abdullah, M.M.; Hashem, A.I. Effect of different families of hydrophobic anions of imadazolium ionic liquids on asphaltene dispersants in heavy crude oil. Energy Fuels 2017, 31, 8045–8053. [Google Scholar] [CrossRef]
- Abdullah, M.M.; AlQuraishi, A.A.; Allohedan, H.A.; AlMansour, A.O.; Atta, A.M. Synthesis of novel water soluble poly (ionic liquids) based on quaternary ammonium acrylamidomethyl propane sulfonate for enhanced oil recovery. J. Mol. Liq. 2017, 233, 508–516. [Google Scholar] [CrossRef]
- Oropeza, E.A.F.; Sotelo, L.V.C.; Ortega, A.L.; Cortez, J.G.H.; Ramírez, F.A.; Martinez, A.E.; Moreno, F.S.V. Synergistic Formulations of Functionalized Copolymers and Ionic Liquids for Dehydrated and Desalted of Medium, Heavy and Extra Heavy Crude Oils. U.S. Patent 9,587,182B2, 3 July 2017. [Google Scholar]
- Sakthivel, S.; Gardas, R.L.; Sangwai, J.S. Effect of alkyl ammonium ionic liquids on the interfacial tension of the crude oil–water system and their use for the enhanced oil recovery using ionic liquid-polymer flooding. Energy Fuels 2016, 30, 2514–2523. [Google Scholar] [CrossRef]
- Ogunlaja, S.A.; Hosten, E.; Tshentu, R.Z. Dispersion of asphaltenes in Petroleum with ionic liquids: Evaluation of molecular interactions in the binary mixture. Ind. Eng. Chem. Res. 2014, 53, 18390–18401. [Google Scholar] [CrossRef]
- Atta, A.M.; Elsaeed, A.M. Use of rosin-based nonionic surfactants as petroleum crude oil sludge dispersants. J. Appl. Polym. Sci. 2011, 122, 183–192. [Google Scholar] [CrossRef]
- AlHumaidan, F.S.; Hauser, A.; Rana, M.S.; Lababidi, H.M.; Behbehani, M. Changes in asphaltene structure during thermal cracking of residual oils: XRD study. Fuel 2015, 150, 558–564. [Google Scholar] [CrossRef]
- Ali, M.F.; Siddiqui, M.N.; Al-Hajji, A.A. Structural studies on residual fuel oil asphaltenes by RICO method. Pet. Sci. Technol. 2004, 22, 631–645. [Google Scholar] [CrossRef]
- Potangale, M.; Das, A.; Kapoor, S.; Tiwari, S. Effect of anion and alkyl chain length on the structure and interactions of N-alkyl pyridinium ionic liquids. J. Mol. Liq. 2017, 240, 694–707. [Google Scholar] [CrossRef]
- Yan, Q.; Zheng, H.-N.; Jiang, C.; Li, K.; Xiao, S.-J. EDC/NHS activation mechanism of polymethacrylic acid: Anhydride versus NHS-ester. RSC Adv. 2015, 5, 69939–69947. [Google Scholar] [CrossRef]
- Gonçalves, M.; Teixeira, M.; Pereira, R.; Mercury, R.; Matos, J.d.R. Contribution of thermal analysis for characterization of asphaltenes from Brazilian crude oil. J. Therm. Anal. Calorim. 2001, 64, 697–706. [Google Scholar] [CrossRef]
- Gryaznov, P.I.; Yakubova, S.G.; Tazeeva, E.G.; Milordov, D.V.; Yakubov, M.R. Thermal stability and sorption properties of asphaltene sulfocathionites. Pet. Sci. Technol. 2018, 36, 1837–1842. [Google Scholar] [CrossRef]
- Tong, B.; Liu, Q.-S.; Tan, Z.-C.; Welz-Biermann, U. Thermochemistry of alkyl pyridinium bromide ionic liquids: Calorimetric measurements and calculations. J. Phys. Chem. A 2010, 114, 3782–3787. [Google Scholar] [CrossRef]
- Masson, J.; Polomark, G.; Collins, P. Time-dependent microstructure of bitumen and its fractions by modulated differential scanning calorimetry. Energy Fuels 2002, 16, 470–476. [Google Scholar] [CrossRef]
- McCurdie, M.P.; Belfiore, L.A. Spectroscopic analysis of transition-metal coordination complexes based on poly (4-vinylpyridine) and dichlorotricarbonylruthenium (II). Polymer 1999, 40, 2889–2902. [Google Scholar] [CrossRef]
- Fares, M.M.; El-Khateeb, M.; Asali, K.J. Synthesis, characterization, and some properties of 4-vinylpyridine-Cr (CO) 5 containing polymers. J. Inorg. Organomet. Polym. 2003, 13, 143–155. [Google Scholar] [CrossRef]
- Tu, W.; Szklarz, G.; Adrjanowicz, K.; Grzybowska, K.; Knapik-Kowalczuk, J.; Paluch, M. Effect of cation n-Alkyl side-chain length, temperature, and pressure on the glass-transition dynamics and Crystallization tendency of the [C n C1Pyrr]+[Tf2N]− Ionic Liquid family. J. Phys. Chem. C 2019, 123, 12623–12637. [Google Scholar] [CrossRef]
- Gbadamosi, A.O.; Junin, R.; Manan, M.A.; Agi, A.; Yusuff, A.S. An overview of chemical enhanced oil recovery: Recent advances and prospects. Int. Nano Lett. 2019, 9, 171–202. [Google Scholar] [CrossRef]
- Atta, A.M. Electric desalting and dewatering of crude oil emulsion based on schiff base polymers as demulsifier. Int. J. Electrochem. Sci. 2013, 8, 9474–9498. [Google Scholar]
- Andersen, S.I.; Christensen, S.D. The critical micelle concentration of asphaltenes as measured by calorimetry. Energy Fuels 2000, 14, 38–42. [Google Scholar] [CrossRef]
- Chang, C.-L.; Fogler, H.S. Stabilization of asphaltenes in aliphatic solvents using alkylbenzene-derived amphiphiles. 2. Study of the asphaltene-amphiphile interactions and structures using Fourier transform infrared spectroscopy and small-angle X-ray scattering techniques. Langmuir 1994, 10, 1758–1766. [Google Scholar] [CrossRef]
- Sahiner, N.; Atta, A.M.; Yasar, A.O.; Al-Lohedan, H.A.; Ezzat, A.O. Surface activity of amphiphilic cationic pH-responsive poly (4-vinylpyridine) microgel at air/water interface. Colloids Surf. A Physicochem. Eng. Asp. 2015, 482, 647–655. [Google Scholar] [CrossRef]
- Kang, W.; Yin, X.; Yang, H.; Zhao, Y.; Huang, Z.; Hou, X.; Sarsenbekuly, B.; Zhu, Z.; Wang, P.; Zhang, X. Demulsification performance, behavior and mechanism of different demulsifiers on the light crude oil emulsions. Colloids Surf. A Physicochem. Eng. Asp. 2018, 545, 197–204. [Google Scholar] [CrossRef]
- Tao, J.; Shi, P.; Fang, S.; Li, K.; Zhang, H.; Duan, M. Effect of rheology properties of oil/water interface on demulsification of crude oil emulsions. Ind. Eng. Chem. Res. 2015, 54, 4851–4860. [Google Scholar] [CrossRef]
- Ezzat, A.O.; Atta, A.M.; Al-Lohedan, H.A.; Hashem, A.I. Synthesis and application of new surface active poly (ionic liquids) based on 1, 3-dialkylimidazolium as demulsifiers for heavy petroleum crude oil emulsions. J. Mol. Liq. 2018, 251, 201–211. [Google Scholar] [CrossRef]
Test | Method | Result |
---|---|---|
API gravity (degree) | ASTM-D5002 | 19.2° |
Specific gravity 60/60 (°F) | ASTMD-1298 | 0.939 |
Wax content (wt. %) | UOP 46/64 | 5 |
Asphaltenes content (wt.%) | IP 143/84 | 13 |
Pour point (°C) | IP 15/67(86) | 18 |
Salinity (NaCl; wt. %) | ASTM-D3230 | 0.24 |
Water content (wt. %) | ASTM D1744 | 0.145 |
Total acidity (mg of KOH/g of oil) | ASTM D664 | 2.353 |
Polymers | cmc (mg·L−1) | γcmc mN·m−1 | πcac mN·m−1 | −∂ γ/∂ ln c | Γmax × 1010 mol/cm2 | Amin nm2/molecule | RSN (mL) |
---|---|---|---|---|---|---|---|
QAP-Br | 125 ± 0.3 | 30.2 ± 0.2 | 42 | 6.75 | 2.73 | 0.060 | 14.8 |
AIL | 62.5 ± 0.5 | 36.2 ± 0.4 | 36 | 12.38 | 5.01 | 0.033 | 13.5 |
AIL-2 | - | - | - | - | - | - | 10.3 |
Code | Demulsifier Composition Wt. % | IFT (mN.m−1) Crude Oil: Water | ||||
---|---|---|---|---|---|---|
AIL | AIL-2 | QAP-Br | 90:10 | 50:50 | 10:90 | |
M1 | 100 | 0 | 0 | 2.5 | 1.3 | 0.83 |
M2 | 0 | 100 | 0 | 13.3 | 15.8 | 20.3 |
M3 | 0 | 0 | 100 | 1.3 | 0.53 | 0.13 |
M4 | 60 | 20 | 20 | 0.23 | 1.35 | 3.23 |
M5 | 40 | 20 | 40 | 1.34 | 0.55 | 1.23 |
M6 | 30 | 20 | 50 | 0.53 | 1.45 | 3.53 |
M7 | 20 | 20 | 60 | 2.31 | 1.23 | 0.88 |
Demulsifier Blends | Conc. (ppm) | Demulsification Data | |||||
---|---|---|---|---|---|---|---|
90:10 | 50:50 | 10:90 | |||||
DE% | Time (min) | DE% | Time (min) | DE% | Time (min) | ||
M6 | 100 | 50 | 600 | 20 | 600 | 10 | 600 |
1000 | 80 | 400 | 30 | 500 | 20 | 480 | |
5000 | 100 | 120 | 70 | 360 | 40 | 360 | |
M5 | 100 | 60 | 400 | 60 | 360 | 40 | 320 |
1000 | 70 | 360 | 80 | 240 | 50 | 280 | |
5000 | 80 | 340 | 100 | 120 | 70 | 240 | |
M7 | 100 | 25 | 500 | 40 | 400 | 100 | 120 |
1000 | 30 | 450 | 60 | 350 | 100 | 100 | |
5000 | 40 | 400 | 70 | 300 | 100 | 60 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ismail, A.I.; Atta, A.M.; El-Newehy, M.; El-Hefnawy, M.E. Synthesis and Application of New Amphiphilic Asphaltene Ionic Liquid Polymers to Demulsify Arabic Heavy Petroleum Crude Oil Emulsions. Polymers 2020, 12, 1273. https://doi.org/10.3390/polym12061273
Ismail AI, Atta AM, El-Newehy M, El-Hefnawy ME. Synthesis and Application of New Amphiphilic Asphaltene Ionic Liquid Polymers to Demulsify Arabic Heavy Petroleum Crude Oil Emulsions. Polymers. 2020; 12(6):1273. https://doi.org/10.3390/polym12061273
Chicago/Turabian StyleIsmail, Ali I., Ayman M. Atta, Mohamed El-Newehy, and Mohamed E. El-Hefnawy. 2020. "Synthesis and Application of New Amphiphilic Asphaltene Ionic Liquid Polymers to Demulsify Arabic Heavy Petroleum Crude Oil Emulsions" Polymers 12, no. 6: 1273. https://doi.org/10.3390/polym12061273
APA StyleIsmail, A. I., Atta, A. M., El-Newehy, M., & El-Hefnawy, M. E. (2020). Synthesis and Application of New Amphiphilic Asphaltene Ionic Liquid Polymers to Demulsify Arabic Heavy Petroleum Crude Oil Emulsions. Polymers, 12(6), 1273. https://doi.org/10.3390/polym12061273