Highly Effective Sensitizers Based on Merocyanine Dyes for Visible Light Initiated Radical Polymerization
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Photostability
3.2. Photoinitiating Polymerization Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Matyjaszewski, K.; Davis, T.P. Handbook of Radical Polymerization; A John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2002. [Google Scholar]
- Pączkowski, J.; Neckers, D.C. Photoinduced electron transfer initiating systems for free radical polymerization. In Electron Transfer in Chemistry; Balzani, V., Ed.; WILEY-VCH Verlag GmbH: New York-Weinheim, NY, USA, 2001; Volume 5, pp. 516–585. [Google Scholar]
- Pączkowski, J.; Kabatc, J.; Jędrzejewska, B. Polymethine dyes as fluorescent probes and visible-light photoinitiators for free radical polymerization. In Heterocyclic Polymethine Dyes; Gupta, R.R., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 14, pp. 183–220. [Google Scholar]
- Pączkowski, J. Electron-transfer photoinitiators of free radical polymerization. The effect of the co-iniciator structure on photoinitiation ability. In Photochemistry and UV Curing: New Trends; Fouassier, J.-P., Ed.; Research Signpost: Kerala, India, 2006; p. 101. [Google Scholar]
- Oster, G. Dye-Sensitized photopolymerization. Nature 1954, 173, 300–301. [Google Scholar] [CrossRef]
- Topa, M.; Petko, F.; Galek, M.; Machowski, K.; Pilch, M.; Szymaszek, P.; Ortyl, J. Applicability of 1,6-Diphenylquinolin-2-one derivatives as fluorescent sensors for monitoring the progress of photopolymerisation processes and as photosensitisers for bimolecular photoinitiating systems. Polymers 2019, 11, 1756. [Google Scholar] [CrossRef] [PubMed]
- Yagci, Y.; Jockusch, S.; Turro, N.J. Photoinitiated polymerization: Advances, challenges, and opportunities. Macromolecules 2010, 43, 6245–6260. [Google Scholar] [CrossRef]
- Sun, L.; Jiang, X.; Yin, J. Study of methoxyphenylquinoxalines (MOPQs) as photoinitiators in the negative photo-resist. Prog. Org. Coat. 2010, 67, 225–232. [Google Scholar] [CrossRef]
- Podsiadły, R.; Sokołowska, J. Synthesis of novel oxidizable polymerization sensitizers based on the dithiinoquinoxaline skeleton. Dyes Pigment. 2012, 92, 1300–1307. [Google Scholar] [CrossRef]
- Dumur, F. Recent advances on pyrene-based photoinitiators of polymerization. Eur. Polym. J. 2020, 126, 109564. [Google Scholar] [CrossRef]
- Han, W.; You, J.; Li, H.; Zhao, D.; Nie, J.; Wang, T. Curcuminoid-Based difluoroboron dyes as high-performance photosensitizers in long-wavelength (yellow and red) cationic photopolymerization. Macromol. Rapid Commun. 2019, 40, 1900291. [Google Scholar] [CrossRef]
- Han, W.; Shi, Y.; Xue, T.; Wang, T. Synthesis and electrochemical, linear and third-order nonlinear optical properties of ferrocene-based D-π-A dyes as novel photoredox catalysts in photopolymerization under visible LED irradiations. Dyes Pigment. 2019, 166, 140–148. [Google Scholar] [CrossRef]
- Yoon, J.; Jung, Y.J.; Yoon, J.B.; Damodar, K.; Kim, H.-J.; Shin, M.; Seo, M.; Cho, D.W.; Lee, J.T.; Lee, J.K. The heavy-atom effect on xanthene dyes for photopolymerization by visible light. Polym. Chem. 2019, 10, 5737–5742. [Google Scholar] [CrossRef]
- Xue, T.; Zhao, D.; Hao, T.; Li, X.; Wang, T.; Nie, J. Synthesis, one/two-photon optical and electrochemical properties and the photopolymerization-sensitizing effect of anthracene-based dyes: Influence of the donor groups. New J. Chem. 2019, 43, 6737–6745. [Google Scholar] [CrossRef]
- Oldring, P.K.T. Chemistry and technology of UV and EB formulation for coatings, inks and paints. In Speciality Finishes; Wiley & Sita Techn. Ltd.: London, UK, 1997; Volume 5. [Google Scholar]
- Sokołowska, J.; Podsiadły, R.; Stoczkiewicz, J. Styryl dyes as new photoinitiators for free radical polymerization. Dyes Pigment. 2008, 77, 510–514. [Google Scholar] [CrossRef]
- Encinas, M.V.; Rufs, A.M.; Bertolotti, S.G.; Previtali, C.M. Xanthene dyes/amine as photoinitiators of radical polymerization: A comparative and photochemical study in aqueous medium. Polymer 2009, 50, 2762–2767. [Google Scholar] [CrossRef]
- Wan, X.; Zhao, Y.; Xue, J.; Wu, F.; Fang, X. Water-soluble benzylidene cyclopentanone dye for two-photon photopolymerization. J. Photochem. Photobiol. A Chem. 2009, 202, 74–79. [Google Scholar] [CrossRef]
- Jędrzejewska, B. Factors affecting the TMPTA radical polymerization photoinitiated by phenyltrialkylborates paired with tri-cationic hemicyanine dye. Kinetic studies. Colloid Polym. Sci. 2013, 291, 2225–2236. [Google Scholar] [CrossRef] [PubMed]
- Jędrzejewska, B.; Pietrzak, M.; Rafiński, Z. Phenyltrialkylborates as co-initiators with cyanine dyes in visible light polymerization of acrylates. Polymer 2011, 52, 2110–2119. [Google Scholar] [CrossRef]
- Gould, I.R.; Shukla, D.; Giesen, D.; Farid, S. Energetics of electron-transfer reactions of photoinitiated polymerization: Dye-Sensitized fragmentation of N-Alkoxypyridinium salts. Helv. Chim. Acta 2001, 84, 2796–2812. [Google Scholar] [CrossRef]
- Podsiadły, R.; Sokołowska, J.; Kolińska, J. Heterocyclic dyes as visible photoinitiators for free-radical and cationic polymerization. In Recent Research Developments in Photochemistry and Photobiology; Pandalai, S.G., Ed.; Transworld Research Network: Trivandrum, India, 2011; p. 17. [Google Scholar]
- Tarzi, O.I.; Allonas, X.; Ley, C.; Fouassier, J.-P. Pyrromethene derivatives in three-component photoinitiating systems for free radical photopolymerization. J. Polym. Sci. Part A Polym. Chem. 2010, 48, 2594–2603. [Google Scholar] [CrossRef]
- Dumur, F.; Gigmes, D.; Fouassier, J.-P.; Lalevée, J. Organic electronics: An el dorado in the quest of new photocatalysts for polymerization reactions. Acc. Chem. Res. 2016, 49, 1980–1989. [Google Scholar] [CrossRef]
- Xiao, P.; Zhang, J.; Dumur, F.; Tehfe, M.A.; Morlet-Savary, F.; Graff, B.; Gigmes, D.; Fouassier, J.-P.; Lalevée, J. Visible light sensitive photoinitiating systems: Recent progress in cationic and radical photopolymerization reactions under soft conditions. Prog. Polym. Sci. 2015, 41, 32–66. [Google Scholar] [CrossRef]
- Fouassier, J.-P.; Lalevée, J. Photoinitiators for Polymer Synthesis-Scope, Reactivity, and Efficiency; Wiley-VCH Verlag GmbH & Co KGaA: Weinheim, Germany, 2012. [Google Scholar]
- Würthner, F.; Yao, S.; Debaerdemaeker, T.; Wortmann, R. Dimerization of merocyanine dyes. Structural and energetic characterization of dipolar dye aggregates and implications for nonlinear optical materials. J. Am. Chem. Soc. 2002, 124, 9431–9447. [Google Scholar] [CrossRef]
- Ding, S.; Yao, B.; Schobben, L.; Hong, Y. Barbituric acid based fluorogens: Synthesis, aggregation-induced emission, and protein fibril detection. Molecules 2020, 25, 32. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, C.; Halbhuber, A.; Keil, D.; Strehmel, B. NIR-Sensitized photoinitiated radical polymerization and proton generation with cyanines and LED arrays. Prog. Org. Coat. 2016, 100, 32–46. [Google Scholar] [CrossRef]
- Shirinian, V.Z.; Shimkin, A.A. Merocyanines: Synthesis and application. In Topics in Heterocyclic Chemistry; Gupta, R.R., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 14, pp. 75–105. [Google Scholar]
- Kulinich, A.V.; Ishchenko, A.A. Merocyanine dyes: Synthesis, structure, properties and applications. Russ. Chem. Rev. 2009, 78, 141–164. [Google Scholar] [CrossRef]
- Würthner, F.; Yao, S. Merocyanine dyes containing imide functional groups: Synthesis and studies on hydrogen bonding to melamine receptors. J. Org. Chem. 2003, 68, 8943–8949. [Google Scholar] [CrossRef] [PubMed]
- Mercaldi, G.F.; D’Antonio, E.L.; Aguessi, A.; Rodriguez, A.; Cordeiro, A.T. Discovery of antichagasic inhibitors by high-throughput screening with Trypanosoma cruzi glucokinase. Bioorg. Med. Chem. Lett. 2019, 29, 1948–1953. [Google Scholar] [CrossRef]
- Würthner, F.; Yao, S.; Schilling, J.; Wortmann, R.; Redi-Abshiro, M.; Mecher, E.; Gallego-Gomez, F.; Meerholz, K. ATOP dyes. Optimization of a multifunctional merocyanine chromophore for high refractive index modulation in photorefractive materials. J. Am. Chem. Soc. 2001, 123, 2810–2824. [Google Scholar] [CrossRef]
- Karatsu, T.; Yanai, M.; Yagai, S.; Mizukami, J.; Urano, T.; Kitamura, A. Evaluation of sensitizing ability of barbiturate-functionalized non-ionic cyanine dyes; application for photoinduced radical generation system initiated by near IR light. J. Photochem. Photobiol. A Chem. 2005, 170, 123–129. [Google Scholar] [CrossRef]
- Tehfe, M.-A.; Dumur, F.; Graff, B.; Morlet-Savary, F.; Gigmes, D.; Fouassier, J.-P.; Lalevée, J. Push–pull (thio)barbituric acid derivatives in dye photosensitized radical and cationic polymerization reactions under 457/473 nm laser beams or blue LEDs. Polym. Chem. 2013, 4, 3866–3875. [Google Scholar] [CrossRef]
- Kawamura, K.; Amemiya, T.; Nakai, Y.; Takashima, M. Novel and efficient dye-linked photoinitiator generating a radical via an intramolecular electron-transfer process. J. Photopolym. Sci. Technol. 2009, 22, 591–596. [Google Scholar] [CrossRef][Green Version]
- Kadoma, Y.; Fujisawa, S. Radical-Scavenging activity of thiols, thiobarbituric acid derivatives And phenolic antioxidants determined using the induction period method for radical polymerization of Methyl methacrylate. Polymers 2012, 4, 1025–1036. [Google Scholar] [CrossRef]
- Su, H.-L.; Hsu, J.-M.; Pan, J.-P.; Wang, T.-H.; Yu, F.-E.; Chern, C.-S. Kinetic and structural studies of the polymerization of N,N′-bismaleimide-4,4′-diphenylmethane with barbituric acid. Polym. Eng. Sci. 2011, 51, 1188–1197. [Google Scholar] [CrossRef]
- Benedikt, S.; Wang, J.; Markovic, M.; Moszner, N.; Dietliker, K.; Ovsianikov, A.; Grützmacher, H.; Liska, R. Highly efficient water-soluble visible light photoinitiators. J. Polym. Sci. Part A Polym. Chem. 2016, 54, 473–479. [Google Scholar] [CrossRef]
- Brandrup, J.; Immergut, E.H. Polymer Handbook, 3rd ed.; John Wiley & Sons, Inc.: New York, NY, USA; Chichester, UK; Brisbane, Australia; Toronto, Canada; Singapore, 1989. [Google Scholar]
- Avci, D.; Nobles, J.; Mathias, L.J. Synthesis and photopolymerization kinetics of new flexible diacrylate and dimethacrylate crosslinkers based on C18 diacid. Polymer 2003, 44, 963–968. [Google Scholar] [CrossRef]
- Jakubiak, J.; Allonas, X.; Fouassier, J.P.; Sionkowska, A.; Andrzejewska, E.; Linden, L.Å.; Rabek, J.F. Camphorquinone–amines photoinitating systems for the initiation of free radical polymerization. Polymer 2003, 44, 5219–5226. [Google Scholar] [CrossRef]
- Jakubiak, J.; Rabek, J.F. Modeling of the kinetics of linear and crosslinking photopolymerization. Part III. Polimery 2001, 46, 10–22. [Google Scholar] [CrossRef]
- Andrzejewska, E. Photopolymerization kinetics of multifunctional monomers. Prog. Polym. Sci. 2001, 26, 605–665. [Google Scholar] [CrossRef]
- Anseth, K.S.; Decker, C.; Bowman, C.N. Real-Time infrared characterization of reaction diffusion during multifunctional monomer polymerizations. Macromolecules 1995, 28, 4040–4043. [Google Scholar] [CrossRef]
- Jakubiak, J.; Sionkowska, A.; Lindén, L.Å.; Rabek, J.F. Isothermal photo differential scanning calorimetry. Crosslinking polymerization of multifunctional monomers in presence of visible light photoinitiators. J. Therm. Anal. Calorim. 2001, 65, 435. [Google Scholar] [CrossRef]
- Jiang, X.; Xu, H.; Yin, J. Polymeric amine bearing side-chain thioxanthone as a novel photoinitiator for photopolymerization. Polymer 2004, 45, 133–140. [Google Scholar] [CrossRef]
- Kabatc, J.; Jędrzejewska, B.; Pączkowski, J. New heterobicationic hemicyanine dyes: Synthesis, spectroscopic properties, and photoinitiating ability. J. Polym. Sci. Part. A Polym. Chem. 2006, 44, 6345–6359. [Google Scholar] [CrossRef]
- Rehm, D.; Weller, A. Kinetics of fluorescence quenching by electron and H-atom transfer. Isr. J. Chem. 1970, 8, 259–271. [Google Scholar] [CrossRef]
- Marcus, R.A. On the theory of electron-transfer reactions. VI. unified treatment for homogeneous and electrode reactions. J. Chem. Phys. 1965, 43, 679–701. [Google Scholar] [CrossRef]
- Pa̧czkowski, J.; Pietrzak, M.; Kucybała, Z. Generalization of the kinetic scheme for photoinduced polymerization via an intermolecular electron transfer process. 2. application of the marcus theory. Macromolecules 1996, 29, 5057–5064. [Google Scholar] [CrossRef]
- Eberson, L. Electron. Transfer in Organic Chemistry; Springer: New York, NY, USA, 1987. [Google Scholar]










| Abbr. | Substituent, R | ||||
|---|---|---|---|---|---|
| 1 | ![]() | 452.5 | 65,000 | 521 | 2906 |
| 2 | ![]() | 458 | 86,800 | 525 | 2786 |
| 3 | ![]() | 455 | 77,500 | 527 | 3003 |
| 4 | ![]() | 465.5 | 58,500 | 539 | 2929 |
| 5 | ![]() | 460.5 | 83,200 | 532 | 2919 |
| 6 | ![]() | 458.5 | 76,200 | 529 | 2907 |
| 7 | ![]() | 457 | 61,800 | 545 | 3533 |
| 8 | ![]() | 442.5 | 50,600 | 521 | 3405 |
| 9 | ![]() | 469 | 61,200 | 534 | 2630 |
| 10 | ![]() | 465 | 78,700 | 532 | 2708 |
| 11 | ![]() | 477 | 93,300 | 541 | 2480 |
| 12 | ![]() | 456 | 40,600 | 642 | 6354 |
| 13 | ![]() | 471 | 20,600 | 542 | 2781 |
| Abbr. | Ered (V) | E00 (eV) | ΔGet (eV) | Rp max av (μmol/s) a) | Rp max av (μmol/s) b) | Φpa) | Φpb) | Cfav (%) a) | Cfav (%) b) |
|---|---|---|---|---|---|---|---|---|---|
| 1 | −1.212 | 2.641 | −0.665 | 8.04 | 6.99 | 98.60 | 85.73 | 58 | 51 |
| 2 | −1.268 | 2.613 | −0.581 | 7.50 | 7.08 | 91.97 | 86.83 | 68 | 55 |
| 3 | −1.276 | 2.624 | −0.584 | 6.84 | 6.22 | 83.91 | 74.67 | 57 | 50 |
| 4 | −1.25 | 2.508 | −0.494 | 4.01 | 1.10 | 49.15 | 13.47 | 54 | 53 |
| 5 | −1.308 | 2.597 | −0.525 | 9.10 | 7.04 | 111.56 | 86.34 | 63 | 53 |
| 6 | −1.298 | 2.591 | −0.529 | 9.38 | 7.05 | 115.05 | 86.39 | 65 | 55 |
| 7 | −1.226 | 2.528 | −0.538 | 6.88 | 6.37 | 84.29 | 78.14 | 63 | 54 |
| 8 | −1.268 | 2.652 | −0.620 | 9.17 | 6.88 | 112.40 | 84.30 | 60 | 53 |
| 9 | −1.168 | 2.528 | −0.596 | 7.21 | 4.28 | 81.62 | 52.45 | 54 | 42 |
| 10 | −1.264 | 2.565 | −0.537 | 7.64 | 7.46 | 93.65 | 91.51 | 61 | 57 |
| 11 | −1.104 | 2.508 | −0.640 | 6.40 | 4.78 | 78.48 | 58.63 | 57 | 54 |
| 12 | −1.224 | 2.387 | −0.399 | 16.91 | 15.98 | 207.37 | 195.91 | 73 | 54 |
| 14 | −1.29 | 2.487 | −0.433 | 0.70 | 0.34 | 8.60 | 4.22 | 36 | 30 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jędrzejewska, B.; Wejnerowska, G. Highly Effective Sensitizers Based on Merocyanine Dyes for Visible Light Initiated Radical Polymerization. Polymers 2020, 12, 1242. https://doi.org/10.3390/polym12061242
Jędrzejewska B, Wejnerowska G. Highly Effective Sensitizers Based on Merocyanine Dyes for Visible Light Initiated Radical Polymerization. Polymers. 2020; 12(6):1242. https://doi.org/10.3390/polym12061242
Chicago/Turabian StyleJędrzejewska, Beata, and Grażyna Wejnerowska. 2020. "Highly Effective Sensitizers Based on Merocyanine Dyes for Visible Light Initiated Radical Polymerization" Polymers 12, no. 6: 1242. https://doi.org/10.3390/polym12061242
APA StyleJędrzejewska, B., & Wejnerowska, G. (2020). Highly Effective Sensitizers Based on Merocyanine Dyes for Visible Light Initiated Radical Polymerization. Polymers, 12(6), 1242. https://doi.org/10.3390/polym12061242














