Application of Atmospheric-Pressure-Plasma-Jet Modified Flexible Graphite Sheets in Reduced-Graphene-Oxide/Polyaniline Supercapacitors
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Surface Morphology of Flexible Graphite Sheets
3.2. Surface Wettability of Graphite Sheets
3.3. XPS Measurement of APPJ-Treated Graphite Sheets
3.4. Surface Morphology for rGO/PANI Nanocomposites
3.5. XPS Analysis of rGO/PANI Nanocomposites on Graphite Sheets
3.6. Electrochemical Test of rGO/PANI Nanocomposites on Graphite Sheets
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zare, E.N.; Makvandi, P.; Ashtari, B.; Rossi, F.; Motahari, A.; Perale, G. Progress in conductive polyaniline-based nanocomposites for biomedical applications: A review. J. Med. Chem. 2020, 63, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Huang, J.; Kaner, R.B. Polyaniline nanofibers: A unique polymer nanostructure for versatile applications. Acc. Chem. Res. 2008, 42, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Yonehara, T.; Komaba, K.; Gata, H. Synthesis of polyaniline in seewater. Polymers 2020, 12, 375. [Google Scholar] [CrossRef] [PubMed]
- Eftekhari, A.; Li, L.; Yang, Y. Polyaniline supercapacitors. J. Power Sources 2017, 347, 86–107. [Google Scholar] [CrossRef]
- Cheng, X.; Gui, X.; Lin, Z.; Zheng, Y.; Liu, M.; Zhan, R. Three-dimensional α-Fe2O3/carbon nanotube sponges as flexible supercapacitor electrodes. J. Mater. Chem. A 2015, 3, 20927–20934. [Google Scholar] [CrossRef]
- Saha, S.; Chhetri, S.; Khanra, P.; Samanta, P.; Koo, H.; Murmu, N.C. In-situ hydrothermal synthesis of MnO2/NiO@Ni hetero structure electrode for hydrogen evolution reaction and high energy asymmetric supercapacitor applications. J. Energy Storage 2016, 6, 22–31. [Google Scholar] [CrossRef]
- Kuok, F.H.; Liao, C.Y.; Chen, C.W.; Hao, Y.C.; Yu, I.S.; Chen, J.Z. Screen-printed SnO2/CNT quasi-solid-state gel-electrolyte supercapacitor. Mater. Res. Express 2017, 4, 115501. [Google Scholar] [CrossRef]
- Gao, Z.; Yang, W.; Wang, J.; Wang, B.; Li, Z.; Liu, Q. A new partially reduced graphene oxide nanosheet/polyaniline nanowafer hybrid as supercapacitor electrode material. Energy Fuels 2012, 27, 568–575. [Google Scholar] [CrossRef]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef]
- Chien, H.H.; Lia, C.Y.; Hao, Y.C.; Hsu, C.C.; Cheng, I.C.; Yu, I.S.; Chen, J.Z. Improved performance of polyaniline/reduced-graphene-oxide supercapacitor using atomospheric-pressure-plasma-jet surface treatment of carbon cloth. Electrochimi. Acta 2018, 260, 391–399. [Google Scholar] [CrossRef]
- Liao, C.Y.; Chien, H.H.; Hao, Y.C.; Chen, C.W.; Yu, I.S.; Chen, J.Z. Low-temperature-annealed reduced graphene oxide-polyaniline nanocomposites for supercapacitor applications. J. Electron. Mater. 2018, 47, 3861–3868. [Google Scholar] [CrossRef]
- Liu, C.; Yu, Z.; Neff, D.; Zhamu, A.; Jang, B.Z. Graphene-based supercapacitor with an untraligh energy density. Nano Lett. 2010, 10, 4863–4868. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, Z.; Huang, Y.; Ma, Y.; Wang, C.; Chen, M. Supercapacitor devices based on grephene materials. J. Phys. Chem. C 2009, 113, 13103–13107. [Google Scholar] [CrossRef]
- Kuok, F.H.; Liao, C.Y.; Wan, T.H.; Yeh, P.W.; Cheng, I.C.; Chen, J.Z. Atmospheric pressure plasma jet processed reduced graphene oxides for supercapacitor application. J. Alloy Compd. 2017, 692, 558–562. [Google Scholar] [CrossRef]
- Ke, F.Y.; Liu, Y.; Xu, H.Y.; Ma, Y.; Guang, S.Y.; Zhang, F.Y. Flower-like polyaniline/grephene hybrids for high-performance supercapacitor. Compos. Sci. Technol. 2017, 142, 286–293. [Google Scholar] [CrossRef]
- Moussa, M.; El-Kady, M.F.; Zhao, Z.H.; Majewski, P.; Ma, J. Recent progress and performance evaluation for polyniline/grephene nanocomposites as supercapacitor electrodes. Nanotechnology 2016, 27, 44. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.F.; Schwab, M.G.; Strudwick, A.J.; Hennig, I.; Feng, X.L.; Wu, Z.S. Screen-printable thin film supercapacitor device utilizing praphene/polyaniline inks. Adv. Energy Mater. 2013, 3, 1030–1040. [Google Scholar] [CrossRef]
- Krebs, F.C. Fabrication and processing of polymer solar cells: A review of printing and coating techniques. Sol. Energ. Mat. Sol. C 2009, 93, 394–412. [Google Scholar] [CrossRef]
- Nagano, H.; Ohnish, A.; Nagasaka, Y. Thermophysical properties of high-thermal conductivity GSs for spacecraft thermal design. J. Thermophys. Heat Transf. 2001, 15, 347–353. [Google Scholar] [CrossRef]
- Ono, S.; Nagano, H.; Nishikawa, Y.; Mishiro, M.; Tachikawa, S.; Ogawa, H. Thermalphysical properties of high thermal-conductivity GSs and application to deployable/stowable radiator. J. Thermophys. Heat Transf. 2015, 29, 403–411. [Google Scholar] [CrossRef]
- Chung, D.D.L. Materials for thermal conduction. Appl. Eherm. Eng. 2001, 21, 1593–1605. [Google Scholar]
- Yazicia, M.S.; Krassowski, D.; Prahash, J. Flexible graphite as battery anode and current collector. J. Power Sources 2005, 141, 171. [Google Scholar] [CrossRef]
- Zhang, H.F.; Hsing, I.M. Flexible graphite-based integrated anode plate for direct methanol fuel cells at high methanol feed concentration. J. Power Sources 2007, 167, 450. [Google Scholar] [CrossRef]
- Zhamu, A.; Jang, B.Z. Process for Producing Nano-scaled Graphene Platelet Nanocomposite Electrodes for Supercapacitors. U.S. Patent 7,875,219, 25 January 2001. [Google Scholar]
- Noeske, M.; Degenhardt, J.; Strudthoff, S.; Lommatzsch, U. Plasma jet treatment of five polymers at atmorspheric pressure: Surface modifications and the relevance for adhesion. Int. J. Adhes. Adhes. 2004, 24, 171–177. [Google Scholar] [CrossRef]
- Liu, H.W.; Liang, S.P.; Wu, T.J.; Chang, H.; Kao, P.K.; Hsu, C.C. Rapid atmospheric pressure plasma jet processed reduced graphene oxide counter electrodes for dye-sensitized solar cells. ACS Appl. Mater. Inter. 2014, 6, 15105–15112. [Google Scholar] [CrossRef] [PubMed]
- Kuok, F.H.; Chien, H.H.; Lee, C.C.; Hao, Y.C.; Yu, I.S.; Hsu, C.C.; Cheng, I.C.; Chen, J.Z. Atmospheric-pressure-plasma-jet processed carbon-nanotube (CNT)-reduced graphene oxide (rGO) nanocomposites for gel-electrolyte supercapacitors. RSC Adv. 2018, 8, 2851. [Google Scholar] [CrossRef]
- Wang, C.; Chen, J.Z. Atmospheric-pressure-plasma-jet sintered nanoporous SnO2. Ceram. Int. 2015, 41, 5478–5483. [Google Scholar] [CrossRef]
- Dreyer, D.R.; Park, S.; Bielawski, C.W.; Ruoff, R.S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010, 39, 228–240. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Liu, X.; Chang, J.; Wu, D.; Xu, F.; Zhang, L. Grapene incorporated, N doped activated carbon as catalytic electrode in redox active electrolyte mediated supercapacitor. J. Power Sources 2017, 337, 25–35. [Google Scholar] [CrossRef]
- Zhou, H.; Han, G.; Xiao, Y.; Chang, Y.; Zhai, H.J. Facile preparation of polyrrole/graphene oxide nanocomposites with large areal capacitance using electrochemical codeposition for supercapacitors. J. Power Sources 2014, 263, 259–267. [Google Scholar] [CrossRef]
- Kulkarni, S.B.; Patil, U.M.; Shackery, I.; Sohn, J.S.; Lee, S.; Park, B. High-performance supercapacitor electrode based on a polyaniline nanofibers/3D graphene framework as an efficient charge transporter. J. Mater. Chem. A 2014, 2, 4989–4998. [Google Scholar] [CrossRef]
- Guan, C.; Li, X.; Wang, Z.; Cao, X.; Soci, C.; Zhang, H. Nanoporous walls on macroporous foam: Rational design of electrodes to push areal pseudocapacitance. Adv. Mater. 2012, 24, 4186–4190. [Google Scholar] [CrossRef] [PubMed]
Non-Printed rGO/PANI | 100 °C-Annealed rGO/PANI | |||
---|---|---|---|---|
Potential Scan Rate (mV/s) | CA mF/cm2 | Cs F/g | CA mF/cm2 | Cs F/g |
2 | 0.044 | 0.35 | 28.37 | 227.32 |
20 | 0.035 | 0.28 | 21.34 | 170.99 |
200 | 0.031 | 0.25 | 17.43 | 139.65 |
100 °C-Annealed rGO/PANI Supercapacitor | ||
---|---|---|
Constant Current (mA) | CA mF/cm2 | CS F/g |
0.5 | 15.81 | 126.72 |
1 | 14.92 | 119.54 |
1.5 | 13.75 | 110.19 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, Y.-C.; Nurzal, N.; Chien, H.-H.; Liao, C.-Y.; Kuok, F.-H.; Yang, C.-C.; Chen, J.-Z.; Yu, I.-S. Application of Atmospheric-Pressure-Plasma-Jet Modified Flexible Graphite Sheets in Reduced-Graphene-Oxide/Polyaniline Supercapacitors. Polymers 2020, 12, 1228. https://doi.org/10.3390/polym12061228
Hao Y-C, Nurzal N, Chien H-H, Liao C-Y, Kuok F-H, Yang C-C, Chen J-Z, Yu I-S. Application of Atmospheric-Pressure-Plasma-Jet Modified Flexible Graphite Sheets in Reduced-Graphene-Oxide/Polyaniline Supercapacitors. Polymers. 2020; 12(6):1228. https://doi.org/10.3390/polym12061228
Chicago/Turabian StyleHao, Yu-Chuan, Nurzal Nurzal, Hung-Hua Chien, Chen-Yu Liao, Fei-Hong Kuok, Cheng-Chen Yang, Jian-Zhang Chen, and Ing-Song Yu. 2020. "Application of Atmospheric-Pressure-Plasma-Jet Modified Flexible Graphite Sheets in Reduced-Graphene-Oxide/Polyaniline Supercapacitors" Polymers 12, no. 6: 1228. https://doi.org/10.3390/polym12061228
APA StyleHao, Y.-C., Nurzal, N., Chien, H.-H., Liao, C.-Y., Kuok, F.-H., Yang, C.-C., Chen, J.-Z., & Yu, I.-S. (2020). Application of Atmospheric-Pressure-Plasma-Jet Modified Flexible Graphite Sheets in Reduced-Graphene-Oxide/Polyaniline Supercapacitors. Polymers, 12(6), 1228. https://doi.org/10.3390/polym12061228