Multifunctional and Transformable ‘Clickable’ Hydrogel Coatings on Titanium Surfaces: From Protein Immobilization to Cellular Attachment
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Representative Fabrication of Hydrogel Coating
2.3. Activation of Maleimide Functional Groups
2.4. Functionalization with BODIPY-F and Re-Functionalization Using the Diels–Alder/Retro Diels–Alder Reaction Sequence
2.5. Functionalization with BODIPY-SH via Nucleophilic Thiol-Ene Reaction
2.6. Functionalization with RDGC via Nucleophilic Thiol-Ene Reaction
2.7. Functionalization of Hydrogels with BODIPY-SH via Radical Thiol-Ene Reaction
2.8. Functionalization of Hydrogels with Biotin-benzyl-tetrazine via Inverse-Electron-Demand Diels–Alder Reaction
2.9. Cell Culture on Peptide Functionalized Hydrogels
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Schenk, R. The Corrosion Properties of Titanium and Titanium Alloys. In Titanium in Medicine: Material Science, Surface Science, Engineering. Biological Responses, and Medical Applications; Brunette, D.M., Tengvall, P., Textor, M., Thomsen, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2001; pp. 145–168. [Google Scholar]
- Goodacre, C.J.; Kan, J.Y.; Rungcharassaeng, K. Clinical Complications of Osseointegrated Implants. J. Prosthet. Dent. 1999, 81, 537–552. [Google Scholar] [CrossRef]
- Giacomelli, C.E.; Esplandiú, M.J.; Ortiz, P.I.; Avena, M.J.; De Pauli, C.P. Ellipsometric Study of Bovine Serum Albumin Adsorbed onto Ti/TiO2. J. Colloid Interface Sci. 1999, 411, 404–411. [Google Scholar] [CrossRef] [PubMed]
- Brubaker, C.E.; Messersmith, P.B. The Present and Future of Biologically Inspired Adhesive Interfaces and Materials. Langmuir 2012, 28, 2200–2205. [Google Scholar] [CrossRef] [PubMed]
- Silverman, H.G.; Roberto, F.F. Understanding Marine Mussel Adhesion. Mar. Biotechnol. 2007, 9, 661–681. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Dellatore, S.M.; Miller, W.M.; Messersmith, P.B. Mussel-Inspired Surface Chemistry for Multifunctional Coatings. Science 2007, 318, 426–430. [Google Scholar] [CrossRef] [PubMed]
- Waite, J.H.; Qin, X. Polyphosphoprotein from the Adhesive Pads of Mytilus Edulis. Biochemistry 2001, 40, 2887–2893. [Google Scholar] [CrossRef]
- Burzio, L.A.; Waite, J.H. Cross-Linking in Adhesive Quinoproteins: Studies with Model Decapeptides. Biochemistry 2000, 39, 11147–11153. [Google Scholar] [CrossRef]
- Sever, M.J.; Weisser, J.T.; Monahan, J.; Srinivasan, S.; Wilker, J.J. Metal-Mediated Cross-Linking in the Generation of a Marine-Mussel Adhesive. Angew. Chem. Int. Ed. 2004, 43, 448–450. [Google Scholar] [CrossRef]
- Lee, H.; Scherer, N.F.; Messersmith, P.B. Single-Molecule Mechanics of Mussel Adhesion. Proc. Natl. Acad. Sci. USA 2006, 103, 12999–13003. [Google Scholar] [CrossRef]
- Black, K.C.L.; Liu, Z.; Messersmith, P.B. Catechol Redox Induced Formation of Metal Core-Polymer Shell Nanoparticles. Chem. Mater. 2011, 23, 1130–1135. [Google Scholar] [CrossRef]
- Lee, Y.; Lee, H.; Messersmith, P.B.; Park, T.G. A Bioinspired Polymeric Template for 1D Assembly of Metallic Nanoparticles, Semiconductor Quantum Dots, and Magnetic Nanoparticles. Macromol. Rapid Commun. 2010, 31, 2109–2114. [Google Scholar] [CrossRef] [PubMed]
- Arslan, M.; Gevrek, T.N.; Lyskawa, J.; Szunerits, S.; Boukherroub, R.; Sanyal, R.; Woisel, P.; Sanyal, A. Bioinspired Anchorable Thiol-Reactive Polymers: Synthesis and Applications toward Surface Functionalization of Magnetic Nanoparticles. Macromolecules 2014, 47, 5124–5134. [Google Scholar] [CrossRef]
- Oz, Y.; Arslan, M.; Gevrek, T.N.; Sanyal, R.; Sanyal, A. Modular Fabrication of Polymer Brush Coated Magnetic Nanoparticles: Engineering the Interface for Targeted Cellular Imaging. ACS Appl. Mater. Interfaces 2016, 8, 19813–19826. [Google Scholar] [CrossRef] [PubMed]
- Hadjesfandiari, N.; Weinhart, M.; Kizhakkedathu, J.N.; Haag, R.; Brooks, D.E. Development of an antifouling coating for platelet storage bags using mussel-inspired chemistry. Adv. Healthc. Mater. 2018, 7, 1700839. [Google Scholar] [CrossRef]
- Yu, K.; Lo, J.C.; Yan, M.; Yang, X.; Brooks, D.E.; Hancock, R.E.; Lange, D.; Kizhakkedathu, J.N. Anti- Adhesive Antimicrobial Peptide Coating Prevents Catheter Associated Infection in a Mouse Urinary Infection Model. Biomaterials 2017, 116, 69–81. [Google Scholar] [CrossRef] [PubMed]
- Yeo, H.; Khan, A. Photoinduced Proton-Transfer Polymerization: A Practical Synthetic Tool for Soft Lithography Applications. J. Am. Chem. Soc. 2020, 142, 3479–3488. [Google Scholar] [CrossRef]
- Nimmo, C.M.; Shoichet, M.S. Regenerative Biomaterials that “Click”: Simple, Aqueous-Based Protocols for Hydrogel Synthesis, Surface Immobilization, and 3D Patterning. Bioconjugate Chem. 2011, 22, 2199–2209. [Google Scholar] [CrossRef]
- Oh, J.; Jung, K.I.; Jung, H.W.; Khan, A. A Modular and Practical Synthesis of Zwitterionic Hydrogels through Sequential Amine-Epoxy “Click” Chemistry and N-Alkylation Reaction. Polymers 2019, 11, 1491. [Google Scholar] [CrossRef]
- Cengiz, N.; Rao, J.; Sanyal, A.; Khan, A. Designing functionalizable hydrogels through thiol–epoxy coupling chemistry. Chem. Commun. 2013, 49, 11191–11193. [Google Scholar] [CrossRef]
- Arslan, M.; Gevrek, T.N.; Sanyal, R.; Sanyal, A. Fabrication of poly(ethylene glycol)-based cyclodextrin containing hydrogels via thiol-ene click reaction. Eur. Polym. J. 2015, 62, 426–434. [Google Scholar] [CrossRef]
- Ahadian, S.; Sadeghian, R.B.; Salehi, S.; Ostrovidov, S.; Bae, H.; Ramalingam, M.; Khademhosseini, A. Hydrogels for Tissue Engineering and Regenerative Medicine. Bioconjugate Chem. 2015, 26, 1984–2001. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.; Lee, D.G.; Yeo, H.; Rao, J.; Zhu, Z.; Shin, J.; Jeong, K.; Kim, S.; Jung, H.W.; Khan, A. Proton Transfer Hydrogels: Versatility and Applications. J. Am. Chem. Soc. 2018, 140, 6700–6709. [Google Scholar] [CrossRef] [PubMed]
- Grainger, D.W.; Greef, C.H.; Gong, P.; Lochhead, M.J. Current Microarray Surface Chemistries. Methods Mol. Biol. 2007, 381, 37–57. [Google Scholar] [CrossRef] [PubMed]
- Kopecek, J. Hydrogels: From Soft Contact Lenses and Implants to Self-Assembled Nanomaterials. J. Polym. Sci. Part A Polym. Chem. 2009, 47, 5929–5946. [Google Scholar] [CrossRef] [PubMed]
- Marsden, D.M.; Nicholson, R.L.; Ladlow, M.; Spring, D.R. 3D Small-Molecule Microarrays. Chem. Commun. 2009, 45, 7107–7109. [Google Scholar] [CrossRef]
- Iha, R.K.; Wooley, K.L.; Nyström, A.M.; Burke, D.J.; Kade, M.J.; Hawker, C.J. Applications of Orthogonal “Click” Chemistries in the Synthesis of Functional Soft Materials. Chem. Rev. 2009, 109, 5620–5686. [Google Scholar] [CrossRef]
- Gupta, N.; Lin, B.F.; Campos, L.M.; Dimitriou, M.D.; Hikita, S.T.; Treat, N.D.; Tirrell, M.V.; Clegg, D.O.; Kramer, E.J.; Hawker, C.J. A Versatile Approach to High-Throughput Microarrays Using Thiol-Ene Chemistry. Nat. Chem. 2010, 2, 138–145. [Google Scholar] [CrossRef]
- Nandivada, H.; Chen, H.Y.; Bondarenko, L.; Lahann, J. Reactive Polymer Coatings That “Click”. Angew. Chem. Int. Ed. 2006, 45, 3360–3363. [Google Scholar] [CrossRef]
- Li, Y.; Giesbers, M.; Gerth, M.; Zuilhof, H. Generic Top-Functionalization of Patterned Antifouling Zwitterionic Polymers on Indium Tin Oxide. Langmuir 2012, 28, 12509–12517. [Google Scholar] [CrossRef]
- Laradji, A.M.; McNitt, C.D.; Yadavalli, N.S.; Popik, V.V.; Minko, S. Robust, Solvent-Free, Catalyst-Free Click Chemistry for the Generation of Highly Stable Densely Grafted Poly(ethylene Glycol) Polymer Brushes by the Grafting to Method and Their Properties. Macromolecules 2016, 49, 7625–7631. [Google Scholar] [CrossRef]
- Buhl, M.; Tesch, M.; Lamping, S.; Moratz, J.; Studer, A.; Ravoo, B.J. Preparation of Functional Alternating Polymer Brushes and Their Orthogonal Surface Modification through Microcontact Printing. Chem. Eur. J. 2017, 23, 6042–6047. [Google Scholar] [CrossRef] [PubMed]
- Beria, L.; Gevrek, T.N.; Erdog, A.; Sanyal, R.; Pasini, D.; Sanyal, A. “Clickable” Hydrogels for All: Facile Fabrication and Functionalization. Biomater. Sci. 2014, 2, 67–75. [Google Scholar] [CrossRef]
- Rahane, S.B.; Hensarling, R.M.; Sparks, B.J.; Stafford, C.M.; Patton, D.L. Synthesis of Multifunctional Polymer Brush Surfaces via Sequential and Orthogonal Thiol-Click Reactions. J. Mater. Chem. 2012, 22, 932–943. [Google Scholar] [CrossRef]
- Tan, K.Y.; Ramstedt, M.; Colak, B.; Huck, W.T.S.; Gautrot, J.E. Study of Thiol–ene Chemistry on Polymer Brushes and Application to Surface Patterning and Protein Adsorption. Polym. Chem. 2016, 7, 979–990. [Google Scholar] [CrossRef]
- Subramani, C.; Cengiz, N.; Saha, K.; Gevrek, T.N.; Yu, X.; Jeong, Y.; Bajaj, A.; Sanyal, A.; Rotello, V.M. Direct Fabrication of Functional and Biofunctional Nanostructures through Reactive Imprinting. Adv. Mater. 2011, 23, 3165–3169. [Google Scholar] [CrossRef]
- Sanyal, A. Diels-Alder Cycloaddition-Cycloreversion: A Powerful Combo in Materials Design. Macromol. Chem. Phys. 2010, 211, 1417–1425. [Google Scholar] [CrossRef]
- Gevrek, T.N.; Ozdeslik, R.N.; Sahin, G.S.; Yesilbag, G.; Mutlu, S.; Sanyal, A. Functionalization of Reactive Polymeric Coatings via Diels-Alder Reaction Using Microcontact Printing. Macromol. Chem. Phys. 2012, 213, 166–172. [Google Scholar] [CrossRef]
- Kuzmyn, A.R.; de los Santos Pereira, A.; Pop-Georgievski, O.; Bruns, M.; Brynda, E.; Rodriguez-Emmenegger, C. Exploiting End Group Functionalization for the Design of Antifouling Bioactive Brushes. Polym. Chem. 2014, 5, 4124–4131. [Google Scholar] [CrossRef]
- Yuksekdag, Y.N.; Gevrek, T.N.; Sanyal, A. Diels-Alder “Clickable” Polymer Brushes: A Versatile Catalyst-Free Conjugation Platform. ACS Macro Lett. 2017, 6, 415–420. [Google Scholar] [CrossRef]
- Oz, Y.; Sanyal, A. The Taming of the Maleimide: Fabrication of Maleimide-Containing ‘Clickable’ Polymeric Materials. Chem. Rec. 2018, 18, 570–586. [Google Scholar] [CrossRef]
- Hizal, G.; Tunca, U.; Sanyal, A. Discrete macromolecular constructs via the Diels-Alder “Click” reaction. J. Polym. Sci. Part A Polym. Chem. 2011, 49, 4103–4120. [Google Scholar] [CrossRef]
- Kalaoglu-Altan, O.I.; Sanyal, R.; Sanyal, A. Orthogonally “Clickable” Biodegradable Nanofibers: Tailoring Biomaterials for Specific Protein Immobilization. ACS Omega 2019, 4, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Durmaz, H.; Sanyal, A.; Hizal, G.; Tunca, U. Double Click Reaction Strategies for Polymer Conjugation and Post-Functionalization of Polymers. Polym. Chem. 2012, 3, 825–835. [Google Scholar] [CrossRef]
- Onbulak, S.; Tempelaar, S.; Pounder, R.J.; Gok, O.; Sanyal, R.; Dove, A.P.; Sanyal, A. Synthesis and Functionalization of Thiol-Reactive Biodegradable Polymers. Macromolecules 2012, 45, 1715–1722. [Google Scholar] [CrossRef]
- Gok, O.; Kosif, I.; Dispinar, T.; Gevrek, T.N.; Sanyal, R.; Sanyal, A. Design and Synthesis of Water-Soluble Multifunctionalizable Thiol-Reactive Polymeric Supports for Cellular Targeting. Bioconjugate Chem. 2015, 26, 1550–1560. [Google Scholar] [CrossRef]
- Gevrek, T.N.; Kosif, I.; Sanyal, A. Surface-Anchored Thiol-Reactive Soft Interfaces: Engineering Effective Platforms for Biomolecular Immobilization and Sensing. ACS Appl. Mater. Interfaces 2017, 9, 27946–27954. [Google Scholar] [CrossRef]
- Gevrek, T.N.; Bilgic, T.; Klok, H.A.; Sanyal, A. Maleimide-Functionalized Thiol Reactive Copolymer Brushes: Fabrication and Post-Polymerization Modification. Macromolecules 2014, 47, 7842–7851. [Google Scholar] [CrossRef]
- Dübner, M.; Gevrek, T.N.; Sanyal, A.; Spencer, N.D.; Padeste, C. Fabrication of Thiol-Ene “clickable” copolymer-Brush Nanostructures on Polymeric Substrates via Extreme Ultraviolet Interference Lithography. ACS Appl. Mater. Interfaces 2015, 7, 11337–11345. [Google Scholar] [CrossRef]
- Dübner, M.; Cadarso, V.J.; Gevrek, T.N.; Sanyal, A.; Spencer, N.D.; Padeste, C. Reversible Light-Switching of Enzymatic Activity on Orthogonally Functionalized Polymer Brushes. ACS Appl. Mater. Interfaces 2017, 9, 9245–9249. [Google Scholar] [CrossRef]
- Kosif, I.; Park, E.J.; Sanyal, R.; Sanyal, A. Fabrication of Maleimide Containing Thiol Reactive Hydrogels via Diels−Alder/Retro-Diels−Alder Strategy. Macromolecules 2010, 43, 4140–4148. [Google Scholar] [CrossRef]
- Park, E.J.; Gevrek, T.N.; Sanyal, R.; Sanyal, A. Indispensable Platforms for Bioimmobilization: Maleimide-Based Thiol Reactive Hydrogels. Bioconjugate Chem. 2014, 25, 2004–2011. [Google Scholar] [CrossRef] [PubMed]
- Cengiz, N.; Gevrek, T.N.; Sanyal, R.; Sanyal, A. Orthogonal Thiol-ene ‘Click’ Reactions: A Powerful Combination for Fabrication and Functionalization of Patterned Hydrogels. Chem. Commun. 2017, 53, 8894–8897. [Google Scholar] [CrossRef] [PubMed]
- Gevrek, T.N.; Yu, K.; Kizhakkedathu, J.N.; Sanyal, A. Thiol-Reactive Polymers for Titanium Interfaces: Fabrication of Antimicrobial Coatings. ACS Appl. Polym. Mater. 2019, 1, 1308–1316. [Google Scholar] [CrossRef]
- Lee, H.; Lee, B.P.; Messersmith, P.B. A Reversible Wet/Dry Adhesive Inspired by Mussels and Geckos. Nature 2007, 448, 338–341. [Google Scholar] [CrossRef] [PubMed]
- Dispinar, T.; Sanyal, R.; Sanyal, A. A Diels-Alder/Retro Diels-Alder Strategy to Synthesize Polymers Bearing Maleimide Side Chains. J. Polym. Sci. Part A Polym. Chem. 2007, 45, 4545–4551. [Google Scholar] [CrossRef]
- Shepherd, J.L.; Kell, A.; Chung, E.; Sinclar, C.W.; Workentin, M.S.; Bizzotto, D. Selective Reductive Desorption of a SAM-Coated Gold Electrode Revealed Using Fluorescence Microscopy. J. Am. Chem. Soc. 2004, 126, 8329–8335. [Google Scholar] [CrossRef]
- Cengiz, N.; Gevrek, T.N.; Sanyal, R.; Sanyal, A. Fabrication of Patterned Hydrogel Interfaces: Exploiting the Maleimide Group as a Dual Purpose Handle for Cross-Linking and Bioconjugation. Bioconjugate Chem. 2020, 31, 1382–1391. [Google Scholar] [CrossRef]
- Mitcova, L.; Buffeteau, T.; Le Bourdon, G.; Babot, O.; Vellutini, L.; Heuze, K. Positive Dendritic Effect on Maleimide Surface Modification of Core-Shell (γ-Fe2O3/Polymer) Nanoparticles for Bio-Immobilization. ChemistrySelect 2016, 1, 4350–4356. [Google Scholar] [CrossRef]
- Lowe, S.; O’Brien-Simpson, N.M.; Connal, L.A. Antibiofouling polymer interfaces: Poly(ethylene glycol) and other promising candidates. Polym. Chem. 2015, 6, 198–212. [Google Scholar] [CrossRef]
- Dalsin, J.L.; Messersmith, P.B. Bioinspired antifouling polymers. Mater. Today 2005, 8, 38–46. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gevrek, T.N.; Degirmenci, A.; Sanyal, R.; Sanyal, A. Multifunctional and Transformable ‘Clickable’ Hydrogel Coatings on Titanium Surfaces: From Protein Immobilization to Cellular Attachment. Polymers 2020, 12, 1211. https://doi.org/10.3390/polym12061211
Gevrek TN, Degirmenci A, Sanyal R, Sanyal A. Multifunctional and Transformable ‘Clickable’ Hydrogel Coatings on Titanium Surfaces: From Protein Immobilization to Cellular Attachment. Polymers. 2020; 12(6):1211. https://doi.org/10.3390/polym12061211
Chicago/Turabian StyleGevrek, Tugce Nihal, Aysun Degirmenci, Rana Sanyal, and Amitav Sanyal. 2020. "Multifunctional and Transformable ‘Clickable’ Hydrogel Coatings on Titanium Surfaces: From Protein Immobilization to Cellular Attachment" Polymers 12, no. 6: 1211. https://doi.org/10.3390/polym12061211
APA StyleGevrek, T. N., Degirmenci, A., Sanyal, R., & Sanyal, A. (2020). Multifunctional and Transformable ‘Clickable’ Hydrogel Coatings on Titanium Surfaces: From Protein Immobilization to Cellular Attachment. Polymers, 12(6), 1211. https://doi.org/10.3390/polym12061211