Hydrophobically Functionalized Poly(Acrylic Acid) Comprising the Ester-Type Labile Spacer: Synthesis and Self-Organization in Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization
2.3. Synthesis of the Hydrophobically Functionalized Poly(Acrylic Acid)
- PAA-g-C12OH(15%): Yield: 75%; IR/cm−1: 3435 (O-H, stretching), 2939 (C-H, stretching), 1736 (C=O, stretching–ester), 1716 (C=O, stretching–carboxylic acid), 1030 (C-O, stretching); 1H NMR/ppm D2O: -CH3 (0.89–0.92, t), -CH(CO)CH2- (1.23–2.45, broad m), -OCH2CH2- (2.70–2.72, m), -OCH2- (2.91–3.06, m)
- PAA-g-C12OH(40%): Yield: 68%; IR/cm−1: 3450 (O-H, stretching), 2945 (C-H, stretching), 1736 (C=O, stretching–ester), 1719 (C=O, stretching–carboxylic acid), 1023 (C-O, stretching); 1H NMR/ppm D2O: -CH3 (0.98–1.01, t), -CH(CO)- (1.31–2.58, broad m), -OCH2CH2- (2.79–2.81, m), -OCH2- (3.02–3.14, m)
- PAA-g-C16OH(15%): Yield: 72%; IR/cm−1: 3438 (O-H, stretching), 2932 (C-H, stretching), 1740 (C=O, stretching–ester), 1718 (C=O, stretching–carboxylic acid), 1044 (C-O, stretching); 1H NMR/ppm D2O: -CH3 (0.94–0.97, t), -CH(CO)- (1.27–2.50, broad m), -OCH2CH2- (2.76–2.79, m), -OCH2- (2.96–3.10, m)
- PAA-g-C16OH(40%): Yield: 64%; IR/cm−1: 3442 (O-H, stretching), 2939 (C-H, stretching), 1734 (C=O, stretching–ester), 1717 (C=O, stretching–carboxylic acid), 1029 (C-O, stretching); 1H NMR/ppm D2O: -CH3 (0.96–0.99, t), -CH(CO)- (1.30–2.53, broad m), -OCH2CH2- (2.76–2.79, m), -OCH2- (2.99–3.12, m)
2.4. NMR Measurements
Diffusion Coefficients and Hydrodynamic Diameters Using Diffusion-Ordered Nuclear Magnetic R‘esonance (DOSY NMR)
2.5. Molecular Dynamics Modeling
3. Results and Discussion
3.1. Design, Synthesis, and Characterization of the Hydrophobically Functionalized Poly(Acrylic Acid)
3.2. NMR Diffusometry Studies upon Self-Organization of Hydrophobically Functionalized Poly(Acrylic Acid)
3.3. Molecular Dynamics Simulation of Self-Assembly of a Single Hydrophobically Functionalized Poly(Acrylic Acid)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Liu, L.-Y.; Xia, G.; Feng, Z.-J.; Hao, Q.-H.; Tan, H.-G. Self-assembly of Polyelectrolyte Diblock Copolymers at Monovalent and Multivalent Counterions. Soft Matter 2019, 15, 3689—3699. [Google Scholar] [CrossRef] [PubMed]
- Kotz, J.; Kosmella, S.; Beitz, T. Self-Assembled Polyelectrolyte Systems. Prog. Polym. Sci. 2001, 26, 1199–1232. [Google Scholar] [CrossRef]
- Olea, A.F. Hydrophobic Polyelectrolytes. In Ionic Interactions in Natural and Synthetic Macromolecules, 1st ed.; Ciferri, A., Perico, A., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012. [Google Scholar]
- Gradzielski, M.; Hoffmann, I. Polyelectrolyte-Surfactant Complexes (PESCs) Composed of Oppositely Charged Components. Curr. Opin. Colloid. Interface Sci. 2018, 35, 124–141. [Google Scholar] [CrossRef]
- Bzowska, M.; Karabasz, A.; Szczepanowicz, K. Encapsulation of Camptothecin into Pegylated Polyelectrolyte Nanocarriers. Colloids Surf. A 2018, 557, 36–42. [Google Scholar] [CrossRef]
- Perrin, P.; Porcar, I.; Tribet, C. Stimuli-Responsive Emulsions Stabilized by Polymeric Surfactants. Polym. Int. 2003, 52, 465–470. [Google Scholar] [CrossRef]
- Ibragimova, A.R.; Mirgorodskaya, A.B.; Vasilieva, E.A.; Khairutdinova, E.I.; Meleshko, T.K.; Ivanov, I.V.; Yakimansky, A.V.; Nizameev, I.R.; Kadirov, M.K.; Zakharova, L.Y. Polyelectrolyte Nanocapsules with Controlled Properties Fabricated by Layer-by-Layer Deposition of Polyethyleneimine and Graft-Copolyimide with Polymethacrylic Acid Side Chains, Colloids Surf. A 2017, 526, 20–28. [Google Scholar] [CrossRef]
- Sun, L.; Ma, S.; Wang, C.; Chia, Y.; Dong, J. Supramolecular Self-Assembly of a Polyelectrolyte Chain Based on Step-Growth Polymerization of Hydrophobic and Hydrophilic Monomers. RCS Adv. 2017, 7, 52832–52840. [Google Scholar] [CrossRef] [Green Version]
- Deo, P.; Somasundaran, P. Interactions of Hydrophobically Modified Polyelectrolytes with Nonionic Surfactants. Langmuir 2005, 21, 3950–3956. [Google Scholar] [CrossRef]
- Aricov, L.; Petkova, H.; Arabadzhieva, D.; Iovescu, A.; Mileva, E.; Khristov, K.; Stinga, G.; Florentina-Mihailescu, C.; Anghel, D.F.; Todorov, R. Aqueous Solutions of Associative Poly(Acrylates): Bulk and Interfacial Properties. Colloids Surf. A 2016, 505, 138–149. [Google Scholar] [CrossRef]
- Strauss, U.P.; Gersheld, N.L. The Transition from Typical Polyelectrolyte to Polysoap I. Viscosity and Solubilization Studies on Copolymers of 4-Vinyl-N-ethylpyridinium Bromide and 4-Vinyl-N-n-dodecylpyridinium Bromide. J. Phys. Chem. 1954, 58, 747–753. [Google Scholar]
- Janovák, L.; Turcsányi, Á.; Bozó, É.; Deák, Á.; Mérai, L.; Sebők, D.; Juhász, Á.; Csapó, E.; Abdelghafour, M.M.; Farkas, E.; et al. Preparation of Novel Tissue Acidosis-Responsive Chitosan Drug Nanoparticles: Characterization and in Vitro Release Properties of Ca2+ Channel Blocker Nimodipine Drug Molecules. Eur. J. Pharm. Sci. 2018, 123, 79–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamch, Ł.; Pucek, A.; Kulbacka, J.; Chudy, M.; Jastrzębska, E.; Tokarska, K.; Bułka, M.; Brzózka, Z.; Wilk, K.A. Recent Progress in the Engineering of Multifunctional Colloidal Nanoparticles for Enhanced Photodynamic Therapy and Bioimaging. Adv. Colloid Interface Sci. 2018, 261, 62–81. [Google Scholar] [CrossRef] [PubMed]
- Szczepanowicz, K.; Para, G.; Wilk, K.A.; Warszyński, P. Co-Adsorption of Polyanions and Esterquat Surfactants; Effect on Formation and Stability of Micellar core Nanocapsules. Colloids Surf. A 2017, 519, 117–124. [Google Scholar] [CrossRef]
- Lamch, Ł.; Tylus, W.; Jewgiński, M.; Latajka, R.; Wilk, K.A. Location of Varying Hydrophobicity Zinc (II) Phthalocyanine-Type Photosensitizers in Methoxy Poly(Ethylene Oxide) and Poly(L-lactide) Block Copolymer Micelles using 1H NMR and XPS Techniques. J. Phys. Chem. B 2016, 120, 12768−12780. [Google Scholar] [CrossRef]
- Lamch, Ł.; Ronka, S.; Warszyński, P.; Wilk, K.A. NMR Studies of Self-Organization Behavior of Hydrophobically Functionalized Poly(4-styrenosulfonic-co-maleic Acid) in Aqueous Solution. J. Mol. Liquids 2020, 308, 112990. [Google Scholar] [CrossRef]
- Adamczyk, Z.; Bratek, A.; Jachimska, B.; Jasiński, T.; Warszyński, P. Structure of Poly(Acrylic) Acid in Electrolyte Solutions Determined from Simulations and Viscosity Measurements. J. Chem. Phys. B 2016, 110, 22426−22435. [Google Scholar] [CrossRef]
- Katiyar, R.S.; Jha, P.K. Phase Behavior of Aqueous Polyacrylic Acid Solutions Using Atomistic Molecular Dynamics Simulations of Model Oligomers. Polymer 2017, 114, 266–276. [Google Scholar] [CrossRef]
- Sulatha, M.S.; Natarajan, U. Molecular Dynamics Simulations of Adsorption of Poly(Acrylic Acid) and Poly(methacrylic acid) on Dodecyltrimethylammonium Chloride Micelle in Water: Effect of Charge Density. J. Phys. Chem. B 2015, 119, 12526−12539. [Google Scholar] [CrossRef]
- Emamyari, S.; Fazli, H. Single-Chain Conformational Characteristics of Comb-Like Polyelectrolytes: Molecular Dynamics Simulation Study. Macromol. Res. 2019, 27, 14–24. [Google Scholar] [CrossRef]
- Krieger, E.; Vriend, G. New Ways to Boost Molecular Dynamics Simulations. J. Comput. Chem. 2015, 36, 996–1007. [Google Scholar] [CrossRef]
- Case, D.A.; Babin, V.; Berryman, J.T.; Betz, R.M.; Cai, Q.; Cerutti, D.S.; Cheatham, T.E.; Darden, T.A.; Duke, R.E.; Gohlke, H.; et al. AMBER 14 Reference Manual; University of California: San Francisco, CA, USA, 2014. [Google Scholar]
- Krieger, E.; Nielsen, J.E.; Spronk, C.A.E.M.; Vriend, G. Fast Empirical pKa Prediction by Ewald Summation. J. Mol. Graph. Model. 2006, 25, 481–486. [Google Scholar] [CrossRef] [PubMed]
- Ishimuro, Y.; Ueberreiter, K. The Surface Tension of Poly(acrylic acid) in Sodium Chloride Solutions. Colloid Polym. Sci. 1980, 258, 1052–1054. [Google Scholar] [CrossRef]
- Rosen, M.J. Surfactants and Interfacial Phenomena, 3rd ed.; Wiley-Interscience: New York, NY, USA, 2004. [Google Scholar]
- Harrell, C.W.; McCarroll, M.E.; Morris, K.F.; Billiot, E.J.; Warner, I.M. Fluorescence and Nuclear Magnetic Resonance Spectroscopic Studies of the Effect of the Polymerization Concentration on the Properties of an Amino Acid-Based Polymeric Surfactant. Langmuir 2003, 19, 10684–10691. [Google Scholar] [CrossRef]
- Vakil, R.; Kwon, G.S. Poly(ethylene glycol)-b-Poly(E-caprolactone) and PEG-Phospholipid Form Stable Mixed Micelles in Aqueous Media. Langmuir 2006, 22, 9723–9729. [Google Scholar] [CrossRef] [PubMed]
- Lu, A.; Wang, J.; Najarro, M.C.; Li, S.; Deratani, A. Synthesis and Self-Assembly of AB2-Type Amphiphilic Copolymers from Biobased Hydroxypropyl Methyl Cellulose and Poly(L-lactide). Carbohydr. Polym. 2019, 211, 133–140. [Google Scholar] [CrossRef]
- Awad, T.S.; Asker, D.; Romsted, L.S. Evidence of Coexisting Microemulsion Droplets in Oil-in-Water Emulsions Revealed by 2D DOSY 1H NMR. J. Colloid Interface Sci. 2018, 514, 83–92. [Google Scholar] [CrossRef]
- Graham, T.R.; Han, K.S.; Dembowski, M.; Krzysko, A.J.; Jianzhi Hu, X.Z.; Clark, S.B.; Clark, A.E.; Schenter, G.K.; Pearce, C.I.; Rosso, K.M. 27Al Pulsed Field Gradient, Diffusion−NMR Spectroscopy of Solvation Dynamics and Ion Pairing in Alkaline Aluminate Solutions. J. Phys. Chem. B 2018, 122, 10907−10912. [Google Scholar] [CrossRef]
- Nilsson, M.; Håkansson, B.; Söderman, O.; Topgaard, D. Influence of Polydispersity on the Micellization of Triblock Copolymers Investigated by Pulsed Field Gradient Nuclear Magnetic Resonance. Macromolecules 2007, 40, 8250–8258. [Google Scholar] [CrossRef]
- Manning, G.S.; Selegny, E. Limiting Laws for Equilibrium and Transport Properties of Polyelectrolyte Solutions. In Polyelectrolytes; Selegny, E., Reldel, D., Strauss, U.P., Eds.; Springer: Dordrecht, The Netherlands, 1974; pp. 9–37. [Google Scholar]
C [mg/mL] | Model (G1 or G2) | PAA-g-C12OH(15%) | PAA-g-C16OH(40%) | ||||
---|---|---|---|---|---|---|---|
D [m2/s] | DH [nm] | R2 | D [m2/s] | DH [nm] | R2 | ||
10 | G1 (1 coefficient) | 5.502 × 10−10 | 0.7 | 0.99977 | 5.368 × 10−10 | 0.7 | 0.99990 |
G1 (2 coefficients) | 6.352 × 10−10 | 0.6 | 0.99976 | 5.815 × 10−10 | 0.7 | 0.99989 | |
6.218 × 10−10 | 0.6 | 5.949 × 10−10 | 0.7 | ||||
G2 (1 coefficient) | 5.498 × 10−10 | 0.7 | 0.99977 | 5.357 × 10−10 | 0.8 | 0.99990 | |
G2 (2 coefficients) | 5.498 × 10−10 | 0.7 | 0.99973 | 5.356 × 10−10 | 0.8 | 0.99989 | |
5.498 × 10−10 | 0.7 | 5.356 × 10−10 | 0.8 | ||||
45 | G1 (1 coefficient) | 4.007 × 10−10 | 1.0 | 0.99976 | 2.791 × 10−10 | 1.4 | 0.99645 |
G1 (2 coefficients) | 4.236 × 10−10 | 1.0 | 0.99996 | 3.508 × 10−10 | 1.1 | 0.99986 | |
6.958 × 10−11 | 5.8 | 7.185 × 10−11 | 5.6 | ||||
G2 (1 coefficient) | 4.016 × 10−10 | 1.0 | 0.99976 | 2.580 × 10−10 | 1.6 | 0.99645 | |
G2 (2 coefficients) | 4.228 × 10−10 | 0.9 | 0.99996 | 3.509 × 10−10 | 1.2 | 0.99986 | |
6.953 × 10−11 | 5.8 | 7.185 × 10−11 | 5.9 | ||||
100 | G1 (1 coefficient) | 3.635 × 10−10 | 1.1 | 0.99761 | 3.236 × 10−10 | 1.2 | 0.99994 |
G1 (2 coefficients) | 5.781 × 10−10 | 0.7 | 0.99986 | 3.236 × 10−10 | 1.2 | 0.99993 | |
2.196 × 10−10 | 1.8 | 3.326 × 10−11 | 1.2 | ||||
G2 (1 coefficient) | 3.610 × 10−10 | 1.1 | 0.99745 | 3.238 × 10−10 | 1.2 | 0.99994 | |
G2 (2 coefficients) | 5.789 × 10−10 | 0.7 | 0.99986 | 3.238 × 10−10 | 1.2 | 0.99993 | |
2.194 × 10−10 | 1.8 | 3.238 × 10−10 | 1.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lamch, Ł.; Ronka, S.; Moszyńska, I.; Warszyński, P.; Wilk, K.A. Hydrophobically Functionalized Poly(Acrylic Acid) Comprising the Ester-Type Labile Spacer: Synthesis and Self-Organization in Water. Polymers 2020, 12, 1185. https://doi.org/10.3390/polym12051185
Lamch Ł, Ronka S, Moszyńska I, Warszyński P, Wilk KA. Hydrophobically Functionalized Poly(Acrylic Acid) Comprising the Ester-Type Labile Spacer: Synthesis and Self-Organization in Water. Polymers. 2020; 12(5):1185. https://doi.org/10.3390/polym12051185
Chicago/Turabian StyleLamch, Łukasz, Sylwia Ronka, Izabela Moszyńska, Piotr Warszyński, and Kazimiera A. Wilk. 2020. "Hydrophobically Functionalized Poly(Acrylic Acid) Comprising the Ester-Type Labile Spacer: Synthesis and Self-Organization in Water" Polymers 12, no. 5: 1185. https://doi.org/10.3390/polym12051185
APA StyleLamch, Ł., Ronka, S., Moszyńska, I., Warszyński, P., & Wilk, K. A. (2020). Hydrophobically Functionalized Poly(Acrylic Acid) Comprising the Ester-Type Labile Spacer: Synthesis and Self-Organization in Water. Polymers, 12(5), 1185. https://doi.org/10.3390/polym12051185