Effect of 1,2,4,5-Benzenetetracarboxylic Acid on Unsaturated Poly(butylene adipate-co-butylene itaconate) Copolyesters: Synthesis, Non-Isothermal Crystallization Kinetics, Thermal and Mechanical Properties
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Sample Preparation
2.3. Measurements
2.3.1. Nuclear Magnetic Resonance Spectroscopy (1H NMR)
2.3.2. Fourier Transform Infrared Spectroscopy (FT-IR)
2.3.3. Intrinsic Viscosity (I.V.)
2.3.4. Gel Permeation Chromatography (GPC)
2.3.5. Differential Scanning Calorimetry (DSC)
2.3.6. Thermogravimetric Analysis (TGA)
2.3.7. Dynamic Mechanical Analyzer (DMA)
2.3.8. X-ray Diffraction (XRD)
2.3.9. Tensile Test
2.3.10. Non-isothermal Crystallization Kinetic Procedures
3. Results and Discussion
3.1. The Effect of the BA/BI ratio of PBABA Copolyesters with a BTCA Concentration of 0.1 mole%
3.2. Non-Isothermal Crystallization Kinetics of PBABI Copolyesters
3.2.1. Non-Isothermal Crystallization Kinetics Based on Avrami Equation
3.2.2. Non-Isothermal Crystallization Kinetics Based on Mo Equation
3.3. The Effect of Different BTCA Concentrations at BA/BI = 90/10 of PBABI Copolyesters
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Zia, K.M.; Noreen, A.; Zuber, M.; Tabasum, S.; Mujahid, M. Recent developments and future prospects on bio-based polyesters derived from renewable resources: A review. Int. J. Biol. Macromol. 2016, 82, 1028–1040. [Google Scholar] [CrossRef] [PubMed]
- Cameron, D.J.A.; Shaver, M.P. Aliphatic polyester polymer stars: Synthesis, properties and applications in biomedicine and nanotechnology. Chem. Soc. Rev. 2011, 40, 1761–1776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vert, M.; Li, S.M.; Spenlehauer, G.; Guerin, P. Bioresorbability and biocompatibility of aliphatic polyesters. J. Mater. Sci. Mater. Med. 1992, 3, 432–446. [Google Scholar] [CrossRef]
- Douka, A.; Vouyiouka, S.; Papaspyridi, L.-M.; Papaspyrides, C.D. A review on enzymatic polymerization to produce polycondensation polymers: The case of aliphatic polyesters, polyamides and polyesteramides. Prog. Polym. Sci. 2018, 79, 1–25. [Google Scholar] [CrossRef]
- Vert, M. Aliphatic Polyesters: Great Degradable Polymers That Cannot Do Everything †. Biomacromolecules 2005, 6, 538–546. [Google Scholar] [CrossRef]
- Díaz, A.; Katsarava, R.; Puiggalí, J. Synthesis, Properties and Applications of Biodegradable Polymers Derived from Diols and Dicarboxylic Acids: From Polyesters to Poly(ester amide)s. Int. J. Mol. Sci. 2014, 15, 7064–7123. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.; Zhang, Z.; Liu, Q.; Wang, Z.; Jin, J. Synthesis and biodegradation of aliphatic polyesters from dicarboxylic acids and diols. J. Appl. Polym. Sci. 2003, 90, 982–990. [Google Scholar] [CrossRef]
- Zhou, C.; Wei, Z.; Yu, Y.; Shao, S.; Leng, X.; Wang, Y.; Li, Y. Biobased long-chain aliphatic polyesters of 1,12-dodecanedioic acid with a variety of diols: Odd-even effect and mechanical properties. Mater. Today Commun. 2019, 19, 450–458. [Google Scholar] [CrossRef]
- Dai, J.; Ma, S.; Wu, Y.; Zhu, J.; Liu, X. High bio-based content waterborne UV-curable coatings with excellent adhesion and flexibility. Prog. Org. Coat. 2015, 87, 197–203. [Google Scholar] [CrossRef]
- Dai, J.; Ma, S.; Liu, X.; Han, L.; Wu, Y.; Dai, X.; Zhu, J. Synthesis of bio-based unsaturated polyester resins and their application in waterborne UV-curable coatings. Prog. Org. Coat. 2015, 78, 49–54. [Google Scholar] [CrossRef]
- Fidanovski, B.Z.; Spasojevic, P.M.; Panic, V.V.; Seslija, S.I.; Spasojevic, J.P.; Popovic, I.G. Synthesis and characterization of fully bio-based unsaturated polyester resins. J. Mater. Sci. 2018, 53, 4635–4644. [Google Scholar] [CrossRef]
- Mehta, L.B.; Wadgaonkar, K.K.; Jagtap, R.N. Synthesis and characterization of high bio-based content unsaturated polyester resin for wood coating from itaconic acid: Effect of various reactive diluents as an alternative to styrene. J. Dispers. Sci. Technol. 2019, 40, 756–765. [Google Scholar] [CrossRef]
- Farmer, T.J.; Comerford, J.W.; Pellis, A.; Robert, T. Post-polymerization modification of bio-based polymers: Maximizing the high functionality of polymers derived from biomass: Post-polymerization modification of bio-based polymers. Polym. Int. 2018, 67, 775–789. [Google Scholar] [CrossRef]
- Ali, M.A.; Tateyama, S.; Oka, Y.; Kaneko, D.; Okajima, M.K.; Kaneko, T. Syntheses of high-performance biopolyamides derived from itaconic acid and their environmental corrosion. Macromolecules 2013, 46, 3719–3725. [Google Scholar] [CrossRef]
- Kumar, S.; Samal, S.K.; Mohanty, S.; Nayak, S.K. Synthesis and characterization of itaconic-based epoxy resins. Polym. Adv. Technol. 2018, 29, 160–170. [Google Scholar] [CrossRef]
- Sanchez, I.C.; Eby, R.K. Crystallization of random copolymers. J. Res. Natl. Bur. Stand. Sect. Phys. Chem. 1973, 77A, 353. [Google Scholar] [CrossRef]
- Moore, O.B.; Hanson, P.-A.; Comerford, J.W.; Pellis, A.; Farmer, T.J. Improving the Post-polymerization Modification of Bio-Based Itaconate Unsaturated Polyesters: Catalyzing Aza-Michael Additions With Reusable Iodine on Acidic Alumina. Front. Chem. 2019, 7, 501. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Kong, Y.P.; Niedzielski, S.M.; Singh, R.K.; Putnam, A.J.; Shikanov, A. Characterization of the crosslinking kinetics of multi-arm poly(ethylene glycol) hydrogels formed via Michael-type addition. Soft Matter 2016, 12, 2076–2085. [Google Scholar] [CrossRef] [Green Version]
- Poulopoulou, N.; Kantoutsis, G.; Bikiaris, D.N.; Achilias, D.S.; Kapnisti, M.; Papageorgiou, G.Z. Biobased Engineering Thermoplastics: Poly(butylene 2,5-furandicarboxylate) Blends. Polymers 2019, 11, 937. [Google Scholar] [CrossRef] [Green Version]
- Guidotti, G.; Genovese, L.; Soccio, M.; Gigli, M.; Munari, A.; Siracusa, V.; Lotti, N. Block Copolyesters Containing 2,5-Furan and trans-1,4-Cyclohexane Subunits with Outstanding Gas Barrier Properties. Int. J. Mol. Sci. 2019, 20, 2187. [Google Scholar] [CrossRef] [Green Version]
- Maniar, D.; Jiang, Y.; Woortman, A.J.J.; van Dijken, J.; Loos, K. Furan-Based Copolyesters from Renewable Resources: Enzymatic Synthesis and Properties. ChemSusChem 2019, 12, 990–999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, L.; Mincheva, R.; Xu, Y.; Raquez, J.-M.; Dubois, P. High Molecular Weight Poly(butylene succinate-co-butylene furandicarboxylate) Copolyesters: From Catalyzed Polycondensation Reaction to Thermomechanical Properties. Biomacromolecules 2012, 13, 2973–2981. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.-Y.; Chen, C.-W.; Rwei, S.-P. Influence of asymmetric substituent group 2-methyl-1,3-propanediol on bio-based poly(propylene furandicarboxylate) copolyesters. Soft Matter 2020, 16, 402–410. [Google Scholar] [CrossRef] [PubMed]
- Chan, H.; Cho, C.; Hsu, K.; He, C.; Kuo, C.; Chu, C.; Chen, Y.; Chen, C.; Rwei, S. Smart Wearable Textiles with Breathable Properties and Repeatable Shaping in In Vitro Orthopedic Support from a Novel Biomass Thermoplastic Copolyester. Macromol. Mater. Eng. 2019, 304, 1900103. [Google Scholar] [CrossRef]
- Cho, C.-J.; Chang, Y.-S.; Lin, Y.-Z.; Jiang, D.-H.; Chen, W.-H.; Lin, W.-Y.; Chen, C.-W.; Rwei, S.-P.; Kuo, C.-C. Green electrospun nanofiber membranes filter prepared from novel biomass thermoplastic copolyester: Morphologies and filtration properties. J. Taiwan Inst. Chem. Eng. 2020, 106, 206–214. [Google Scholar] [CrossRef]
- Hsu, K.-H.; Chen, C.-W.; Wang, L.-Y.; Chan, H.-W.; He, C.-L.; Cho, C.-J.; Rwei, S.-P.; Kuo, C.-C. Bio-based thermoplastic poly(butylene succinate-co-propylene succinate) copolyesters: Effect of glycerol on thermal and mechanical properties. Soft Matter 2019, 15, 9710–9720. [Google Scholar] [CrossRef]
- Chen, C.-W.; Hsu, T.-S.; Rwei, S.-P. Effect of Ethylenediaminetetraacetic Acid on Unsaturated Poly(Butylene Adipate-Co-Butylene Itaconate) Copolyester with Low-Melting Point and Controllable Hardness. Polymers 2019, 11, 611. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.-W.; Hsu, T.-S.; Rwei, S.-P. Isothermal Kinetics of Poly(butylene adipate-co-butylene itaconate) Copolyesters with Ethylenediaminetetraacetic Acid. ACS Omega 2020, 5, 3080–3089. [Google Scholar] [CrossRef]
- Xiao, X.; Sui, C.; Han, L.; Liu, J.; Feng, B. Self-assembly of triorganotin(IV) moiety with 1,2,4,5-benzenetetracarboxylic acid: Syntheses, characterizations, and influence of solvent on the molecular structure (II). Heteroat. Chem. 2017, 28, e21356. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Tang, L.; Wang, Y. New Hydrogen-bonded Supramolecular Hydrogels and Fibers Derived from 1,2,4,5-Benzenetetracarboxylic Acid and 4-Hydroxypyridine. Chem. Lett. 2006, 35, 548–549. [Google Scholar] [CrossRef]
- Karki, S.; Friščić, T.; Jones, W. Control and interconversion of cocrystal stoichiometry in grinding: stepwise mechanism for the formation of a hydrogen-bonded cocrystal. CrystEngComm 2009, 11, 470–481. [Google Scholar] [CrossRef]
- Tang, T.; Moyori, T.; Takasu, A. Isomerization-Free Polycondensations of Cyclic Anhydrides with Diols and Preparation of Polyester Gels Containing Cis or Trans Carbon Double Bonds via Photo-Cross-Linking and Isomerization in the Gels. Macromolecules 2013, 46, 5464–5472. [Google Scholar] [CrossRef]
- Brännström, S.; Finnveden, M.; Johansson, M.; Martinelle, M.; Malmström, E. Itaconate based polyesters: Selectivity and performance of esterification catalysts. Eur. Polym. J. 2018, 103, 370–377. [Google Scholar] [CrossRef]
- Ina Schoon; Marcel Kluge; Steven Eschig; Tobias Robert Catalyst Influence on Undesired Side Reactions in the Polycondensation of Fully Bio-Based Polyester Itaconates. Polymers 2017, 9, 693. [CrossRef] [PubMed] [Green Version]
- Brännström, S.; Malmström, E.; Johansson, M. Biobased UV-curable coatings based on itaconic acid. J. Coat. Technol. Res. 2017, 14, 851–861. [Google Scholar] [CrossRef] [Green Version]
- Tang, T.; Takasu, A. Facile synthesis of unsaturated polyester-based double-network gels via chemoselective cross-linking using Michael addition and subsequent UV-initiated radical polymerization. RSC Adv. 2015, 5, 819–829. [Google Scholar] [CrossRef]
- Wu, M.C.; Woo, E. Effects of α-form or β-form nuclei on polymorphic crystalline morphology of poly(butylene adipate). Polym. Int. 2005, 54, 1681–1688. [Google Scholar] [CrossRef]
- Woo, E.M.; Wu, M.C. Thermal and X-ray analysis of polymorphic crystals, melting, and crystalline transformation in poly(butylene adipate). J. Polym. Sci. Part B Polym. Phys. 2005, 43, 1662–1672. [Google Scholar] [CrossRef]
- Gao, C.; Wang, J.; Han, S.; Hu, Z.; Liu, Y. Copolymerization modification of poly (butylene itaconate). In Proceedings of the AIP Conference Proceedings, Chongqing City, China, 27–28 May 2017; Volume 1864, p. 020221. [Google Scholar]
- Wang, H.; Gao, Z.; Yang, X.; Liu, K.; Zhang, M.; Qiang, X.; Wang, X. Epitaxial Crystallization Behavior of Poly(butylene adipate) on Orientated Poly(butylene succinate) Substrate. Polymers 2018, 10, 110. [Google Scholar] [CrossRef] [Green Version]
- Gan, Z.; Abe, H.; Doi, Y. Temperature-Induced Polymorphic Crystals of Poly(butylene adipate). Macromol. Chem. Phys. 2002, 203, 2369–2374. [Google Scholar] [CrossRef]
- Hou, C.; Li, H.; Sun, X.; Yan, S.; Wang, Y.; Chen, S. The dependence of the β-to-α phase transition behavior of poly(1,4-butylene adipate) on phase separated morphology in its blends with poly(vinylidene fluoride). Phys. Chem. Chem. Phys. 2018, 20, 15718–15724. [Google Scholar] [CrossRef] [PubMed]
- Minke, R.; Blackwell, J. Polymorphic structures of poly(tetramethylene adipate). J. Macromol. Sci. Part B 1979, 16, 407–417. [Google Scholar] [CrossRef]
- Noguchi, K.; Kondo, H.; Ichikawa, Y.; Okuyama, K.; Washiyama, J. Molecular and crystal structure of poly(tetramethylene adipate) α form based on synchrotron X-ray fiber diffraction. Polymer 2005, 46, 10823–10830. [Google Scholar] [CrossRef]
- Panic, V.V.; Seslija, S.I.; Popovic, I.G.; Spasojevic, V.D.; Popovic, A.R.; Nikolic, V.B.; Spasojevic, P.M. Simple one-pot synthesis of fully biobased unsaturated polyester resins based on itaconic acid. Biomacromolecules 2017, 18, 3881–3891. [Google Scholar] [CrossRef]
- Xiao, J.; Zhang, H.; Wan, X.; Zhang, D.; Zhou, Q.-F.; Woo, E.M.; Turner, S.R. Effect of rod-like imide unit on crystallization of copoly(ethylene terephthalate-imide). Polymer 2002, 43, 7377–7387. [Google Scholar] [CrossRef]
- Xiao, J.; Zhang, H.; Wan, X.; Zhang, D.; Zhou, Q.-F.; Woo, E.M.; Turner, S.R. Crystallization kinetics of new copoly(ethylene terephthalate-imide)s. Polymer 2002, 43, 3683–3690. [Google Scholar] [CrossRef]
- Müller, A.J.; Michell, R.M.; Lorenzo, A.T. Isothermal Crystallization Kinetics of Polymers. In Polymer Morphology; Guo, Q., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016; pp. 181–203. ISBN 978-1-118-89275-6. [Google Scholar]
- Avrami, M. Kinetics of Phase Change. II Transformation-Time Relations for Random Distribution of Nuclei. J. Chem. Phys. 1940, 8, 212–224. [Google Scholar] [CrossRef]
- Lu, X.F.; Hay, J.N. Isothermal crystallization kinetics and melting behaviour of poly(ethylene terephthalate). Polymer 2001, 42, 9423–9431. [Google Scholar] [CrossRef]
- Keridou, I.; del Valle, L.J.; Funk, L.; Turon, P.; Franco, L.; Puiggalí, J. Non-Isothermal Crystallization Kinetics of Poly(4-Hydroxybutyrate) Biopolymer. Molecules 2019, 24, 2840. [Google Scholar] [CrossRef] [Green Version]
- Xie, W.-J.; Zhou, X.-M. Non-isothermal crystallization kinetics and characterization of biodegradable poly(butylene succinate-co-neopentyl glycol succinate) copolyesters. Mater. Sci. Eng. C 2015, 46, 366–373. [Google Scholar] [CrossRef]
- Yarici, T.; Kodal, M.; Ozkoc, G. Non-isothermal crystallization kinetics of Poly(Butylene succinate) (PBS) nanocomposites with different modified carbon nanotubes. Polymer 2018, 146, 361–377. [Google Scholar] [CrossRef]
- Ozawa, T. Kinetics of non-isothermal crystallization. Polymer 1971, 12, 150–158. [Google Scholar] [CrossRef]
- Liu, T.; Mo, Z.; Wang, S.; Zhang, H. Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone). Polym. Eng. Sci. 1997, 37, 568–575. [Google Scholar] [CrossRef]
- Kissinger, H.E. Reaction Kinetics in Differential Thermal Analysis. Anal. Chem. 1957, 29, 1702–1706. [Google Scholar] [CrossRef]
- Dobreva, A.; Alonso, M.; Gonzalez, M.; Gonzalez, A.; de Saja, J.A. A non-isothermal differential scanning calorimetry method for the determination of specific surface energies in polymer crystals. Thermochim. Acta 1995, 258, 197–204. [Google Scholar] [CrossRef]
- Fisher, J.P.; Timmer, M.D.; Holland, T.A.; Dean, D.; Engel, P.S.; Mikos, A.G. Photoinitiated Cross-Linking of the Biodegradable Polyester Poly(propylene fumarate). Part I. Determination of Network Structure. Biomacromolecules 2003, 4, 1327–1334. [Google Scholar] [CrossRef]
Sample | I.V. (dL g−1) | Mn (g mole−1) | Mw (g mole−1) | Mw/Mn (PDI) |
---|---|---|---|---|
BA/BI = 100/0 | 0.75 | 16,787 | 36,064 | 2.15 |
BA/BI = 95/5 | 1.17 | 26,281 | 64,126 | 2.44 |
BA/BI = 90/10 | 1.23 | 31,970 | 80,564 | 2.52 |
BA/BI = 85/15 | 1.27 | 34,791 | 134,641 | 3.87 |
BA/BI = 80/20 | 1.25 | 39,024 | 161,950 | 4.15 |
Sample | *Tg | Tc | ΔHc | Tm | ΔHm | Td-5% | #Xc |
---|---|---|---|---|---|---|---|
(°C) | (°C) | (mJ mg−1) | (°C) | (mJ mg−1) | (°C) | (%) | |
BA/BI = 100/0 | −51.1 | 29.0 | −60.6 | 49.0 | 57.3 | 341.2 | 42.4 |
BA/BI = 95/5 | −54.6 | 22.5 | −59.4 | 47.4 | 56.0 | 346.5 | 41.6 |
BA/BI = 90/10 | −58.1 | 18.9 | −57.6 | 42.6 | 52.7 | 348.1 | 40.3 |
BA/BI = 85/15 | −57.6 | 15.8 | −57.3 | 38.4 | 52.2 | 336.1 | 39.9 |
BA/BI = 80/20 | −54.6 | 7.2 | −47.5 | 29.8 | 45.0 | 332.6 | 34.2 |
Sample | Yield Strength (MPa) | Elongation (%) | Young’s Modulus (MPa) |
---|---|---|---|
BA/BI = 100/0 | 15.19 ± 1.15 | 56.13 ± 3.99 | 162.95 ± 12.29 |
BA/BI = 95/5 | 14.69 ± 1.01 | 32.73 ± 3.45 | 158.45 ± 10.45 |
BA/BI = 90/10 | 10.12 ± 0.36 | 14.79 ± 2.23 | 96.08 ± 7.82 |
BA/BI = 85/15 | 8.66 ± 0.33 | 13.78 ± 1.14 | 78.72 ± 6.26 |
BA/BI = 80/20 | 5.81 ± 0.19 | 13.91 ± 1.04 | 32.19 ± 1.45 |
Sample | ϕ (°C min−1) | * To (°C) | * Tp (°C) | n | K (min-n) | t1/2 (min) | G (min−1) |
---|---|---|---|---|---|---|---|
BA/BI = 100/0 | 2 | 40.36 | 37.15 | 5.76 | 0.3449 | 1.1288 | 0.8859 |
5 | 37.63 | 33.07 | 4.28 | 0.1372 | 1.4600 | 0.6849 | |
10 | 35.31 | 29.46 | 5.19 | 0.0008 | 3.6816 | 0.2716 | |
BA/BI = 95/5 | 2 | 34.24 | 29.63 | 3.54 | 1.7681 | 0.7676 | 1.3028 |
5 | 31.16 | 27.53 | 5.92 | 0.0271 | 1.5975 | 0.6260 | |
10 | 28.06 | 24.01 | 3.99 | 0.0133 | 2.6935 | 0.3713 | |
BA/BI = 90/10 | 2 | 27.67 | 25.68 | 3.28 | 2.1618 | 0.7070 | 1.4145 |
5 | 25.97 | 21.99 | 3.94 | 0.4035 | 1.1472 | 0.8717 | |
10 | 23.98 | 17.98 | 5.24 | 0.0102 | 2.2370 | 0.4470 | |
BA/BI = 85/15 | 2 | 25.92 | 23.82 | 5.92 | 0.0515 | 1.5514 | 0.6446 |
5 | 24.14 | 20.48 | 5.94 | 0.0098 | 2.0482 | 0.4882 | |
10 | 21.77 | 15.97 | 5.62 | 0.0009 | 3.2631 | 0.3065 | |
BA/BI = 80/20 | 2 | 19.09 | 15.01 | 4.68 | 0.0352 | 1.8904 | 0.5290 |
5 | 15.75 | 9.19 | 4.21 | 0.0213 | 2.2869 | 0.4373 | |
10 | 11.98 | 2.74 | 4.11 | 0.0033 | 3.6732 | 0.2722 |
X (t) | BA/BI = 100/0 | BA/BI = 95/5 | BA/BI = 90/10 | BA/BI = 85/15 | BA/BI = 80/20 | |||||
---|---|---|---|---|---|---|---|---|---|---|
a | F(T) | a | F(T) | a | F(T) | a | F(T) | a | F(T) | |
0.2 | 1.23 | 7.56 | 1.09 | 5.33 | 1.36 | 4.41 | 2.11 | 13.27 | 2.46 | 24.46 |
0.4 | 1.25 | 9.09 | 1.14 | 6.51 | 1.45 | 5.78 | 2.13 | 21.73 | 2.35 | 34.01 |
0.6 | 1.25 | 10.55 | 1.18 | 7.33 | 1.52 | 7.24 | 2.13 | 26.73 | 2.29 | 44.13 |
0.8 | 1.27 | 12.63 | 1.29 | 9.77 | 1.62 | 9.49 | 2.16 | 32.76 | 2.31 | 63.21 |
BA/BI = 95/5 | BA/BI = 90/10 | BA/BI = 85/15 | BA/BI = 80/20 | |
---|---|---|---|---|
ϕ | 0.3203 | 0.2869 | 0.4232 | 0.9581 |
Sample | H1 | H2 | H3 | H4 | H5 | H6 | H7 | H8 |
---|---|---|---|---|---|---|---|---|
BA/BI = 90/10–0.05 | 1.893 (1.003) | 1.975 (0.986) | 2.654 (1.000) | 3.678 (0.033) | 4.415 (1.021) | 6.085 (0.019) | 6.678 (0.017) | 7.073 (0.010) |
BA/BI = 90/10–0.1 | 1.897 (1.004) | 1.971 (0.985) | 2.658 (1.000) | 3.683 (0.045) | 4.419 (1.029) | 6.095 (0.030) | 6.684 (0.024) | 7.072 (0.011) |
BA/BI = 90/10–0.2 | 1.916 (1.007) | 1.998 (1.026) | 2.677 (1.000) | 3.706 (0.036) | 4.438 (1.024) | 6.102 (0.024) | 6.706 (0.021) | 7.102 (0.014) |
Sample | * Tg | Tc (onset) | Tc (peak) | ΔHc | Tm | ΔHm |
---|---|---|---|---|---|---|
(°C) | (°C) | (°C) | (mJ mg−1) | (°C) | (mJ mg−1) | |
BA/BI = 90/10–0.05 | −52.4 | 24.5 | 21.1 | −56.5 | 43.4, 50.8 | 51.2 |
BA/BI = 90/10–0.1 | −54.9 | 23.5 | 19.1 | −52.9 | 41.9, 49.8 | 47.9 |
BA/BI = 90/10–0.2 | −49.1 | 23.4 | 20.8 | −41.4 | 42.1, 49.6 | 38.2 |
Sample | Yield Strength (MPa) | Elongation (%) | Young’s Modulus (MPa) |
---|---|---|---|
BA/BI = 90/10–0.05 | 7.97 ± 0.04 | 15.03 ± 2.56 | 56.49 ± 3.41 |
BA/BI = 90/10–0.1 | 10.12 ± 0.36 | 14.79 ± 2.23 | 96.08 ± 7.82 |
BA/BI = 90/10–0.2 | 11.85 ± 0.14 | 12.19 ± 2.11 | 141.39 ± 7.97 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.-W.; Hsu, T.-S.; Huang, K.-W.; Rwei, S.-P. Effect of 1,2,4,5-Benzenetetracarboxylic Acid on Unsaturated Poly(butylene adipate-co-butylene itaconate) Copolyesters: Synthesis, Non-Isothermal Crystallization Kinetics, Thermal and Mechanical Properties. Polymers 2020, 12, 1160. https://doi.org/10.3390/polym12051160
Chen C-W, Hsu T-S, Huang K-W, Rwei S-P. Effect of 1,2,4,5-Benzenetetracarboxylic Acid on Unsaturated Poly(butylene adipate-co-butylene itaconate) Copolyesters: Synthesis, Non-Isothermal Crystallization Kinetics, Thermal and Mechanical Properties. Polymers. 2020; 12(5):1160. https://doi.org/10.3390/polym12051160
Chicago/Turabian StyleChen, Chin-Wen, Te-Sheng Hsu, Kuan-Wei Huang, and Syang-Peng Rwei. 2020. "Effect of 1,2,4,5-Benzenetetracarboxylic Acid on Unsaturated Poly(butylene adipate-co-butylene itaconate) Copolyesters: Synthesis, Non-Isothermal Crystallization Kinetics, Thermal and Mechanical Properties" Polymers 12, no. 5: 1160. https://doi.org/10.3390/polym12051160
APA StyleChen, C.-W., Hsu, T.-S., Huang, K.-W., & Rwei, S.-P. (2020). Effect of 1,2,4,5-Benzenetetracarboxylic Acid on Unsaturated Poly(butylene adipate-co-butylene itaconate) Copolyesters: Synthesis, Non-Isothermal Crystallization Kinetics, Thermal and Mechanical Properties. Polymers, 12(5), 1160. https://doi.org/10.3390/polym12051160