Directed Polymers and Interfaces in Disordered Media
Abstract
1. Introduction
2. The Field Theory in with Quenched Disorder
3. Field Theory for Interfaces in Random Media
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nelson, D.; Piran, T.; Weinberg, S. (Eds.) Statistical Mechanics of Membranes and Surfaces; World Scientific: Singapore, 2004. [Google Scholar]
- Halpin-Healy, T.; Zhang, Y.C. Kinetic roughening phenomena, stochastic growth, directed polymers and all that. Aspects of multidisciplinary statistical mechanics. Phys. Rep. 1995, 254, 215–414. [Google Scholar] [CrossRef]
- Fredrickson, G.H. The Equilibrium Theory of Inhomogeneous Polymers; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Kawkatsu, T. Statistical Physics of Polymers; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- De Gennes, P.G. Exponents for the excluded volume problem as derived by the Wilson method. Phys. Lett. A 1972, 38, 339–340. [Google Scholar] [CrossRef]
- des Cloizeaux, J. The Lagrangian theory of polymer solutions at intermediate concentrations. Phys. Fr. 1975, 36, 281–291. [Google Scholar] [CrossRef]
- Schäfer, L.; Witten, T.A., Jr. Renormalized field theory of polymer solutions. I. scaling laws. J. Chem. Phys. 1977, 66, 2121. [Google Scholar] [CrossRef]
- Vilgis, T.A. Polymer theory: Path integrals and scaling. Phys. Rep. 2000, 336, 167–254. [Google Scholar] [CrossRef]
- Craig, A.; Terentjev, E.M.; Edwards, S.F. Polymer localization in random potential. Physica A 2007, 384, 150–164. [Google Scholar] [CrossRef]
- Kardar, M.; Nelson, D.R. ϵ expansions for crumpled manifolds. Phys. Rev. Lett. 1987, 58, 1289. [Google Scholar] [CrossRef]
- Kardar, M.; Nelson, D.R. Statistical mechanics of self-avoiding tethered manifolds. Phys. Rev. A 1988, 38, 966. [Google Scholar] [CrossRef]
- Duplantier, B. Interaction of crumpled manifolds with Euclidean elements. Phys. Rev. Lett. 1989, 62, 2337. [Google Scholar] [CrossRef]
- Nattermann, T.; Rujan, P. Random field and others systems dominated by disorder fluctuations. Int. J. Mod. Phys. B 1989, 3, 1597–1654. [Google Scholar] [CrossRef]
- Mézard, M.; Parisi, G. Interfaces in a random medium and replica symmetry breaking. J. Phys. A Math. Gen. 1998, 23, L1229. [Google Scholar] [CrossRef]
- Mézard, M.; Parisi, G. Manifolds in random media: Two extreme cases. J. Phys. I Fr. 1992, 2, 2231–2242. [Google Scholar] [CrossRef]
- Edwards, S.F.; Anderson, P.W. Theory of spin glasses. J. Phys. F 1975, 5, 965–974. [Google Scholar] [CrossRef]
- Mézard, M.; Parisi, G.; Virasoro, M. Spin-Glass Theory and Beyond; World Scientific: Singapore, 1987. [Google Scholar]
- Parisi, G. An introduction to the statistical mechanics of amorphous systems. In Field Theory, Disorder and Simulations; Word Scientific: Singapore, 1992. [Google Scholar]
- Dotsenko, V. Introduction to the Replica Theory in Disordered Statistical Systems; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- De Dominicis, C.; Giardina, I. Random Fields and Spin Glass; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Mézard, M.; Montarini, A. Information, Physics and Computation; Oxford University Press: New York, NY, USA, 2008. [Google Scholar]
- van Hemmen, J.L.; Palmer, R.G. The replica method and solvable spin glass model. J. Phys. A 1979, 12, 563. [Google Scholar] [CrossRef]
- Verbaarschot, J.J.M.; Zirnbauer, M.R. Critique of the replica trick. J. Phys. A Math. Gen. 1985, 17, 1093. [Google Scholar] [CrossRef]
- Zirnbauer, M.R. Another critique of the replica trick. arXiv 1999, arXiv:cond-mat9903338. [Google Scholar]
- Kanzieper, E. On exact integrability of replica field theories in 0 dimensions: Non-Hermitean disordered Hamiltonians. HAIT J. Sci. Eng. 2004, 1, 101–129. [Google Scholar]
- Parisi, G. Field theory and the physics of disordered systems. In Proceedings of the Quarks, Strings and the Cosmos—Hector Rubinstein Memorial Symposium, Stockholm, Sweden, 9–11 August 2010; Volume 109. [Google Scholar]
- Fytas, N.G.; Martin-Maior, V.; Picco, M.; Sourlas, N. Restoration of dimensional reduction in the random-field Ising model at five dimensions. Phys. Rev. E 2017, 95, 042117. [Google Scholar] [CrossRef]
- Ma, S.-k. Modern Theory of Critical Phenomena; Perseus Publishing: Cambridge, UK, 2000. [Google Scholar]
- Gaspari, G.; Rudnick, J. n-vector model in the limit n→0 and the statistics of linear polymer systems: A Ginzburg-Landau theory. Phys. Rev. B 1986, 33, 3295. [Google Scholar] [CrossRef]
- Mézard, M.; Parisi, G. Replica field theory for random manifold. J. Phys. I Fr. 1991, 1, 809–836. [Google Scholar] [CrossRef]
- Svaiter, B.F.; Svaiter, N.F. The distributional zeta-function in disordered field theory. Int. J. Mod. Phys. A 2016, 31, 1650144. [Google Scholar] [CrossRef]
- Svaiter, B.F.; Svaiter, N.F. Disordered field theory in d=0 and distributional zeta-function. arXiv 2016, arXiv:math-phys1606.04854. [Google Scholar] [CrossRef]
- Acosta Diaz, R.; Svaiter, N.F.; Menezes, G.; Zarro, C.A.D. Spontaneous symmetry breaking in replica field theory. Phys. Rev. D 2017, 96, 065012. [Google Scholar] [CrossRef]
- Acosta Diaz, R.; Svaiter, N.F.; Krein, G.; Zarro, C.A.D. Disordered λϕ4 + ρϕ6 Landau-Ginzburg model. Phys. Rev. D 2018, 97, 065017. [Google Scholar] [CrossRef]
- Acosta Diaz, R.; Krein, G.; Saldivar, A.; Svaiter, N.F.; Zarro, C.A.D. Disordered Bose–Einstein condensate in hard walls trap. J. Phys. A 2019, 52, 445401. [Google Scholar] [CrossRef]
- Soares, M.S.; Svaiter, N.F.; Zarro, C.A.D. Multiplicative noise in Euclidean Schwarzschild manifold. Class. Quant. Grav. 2020, 37, 065024. [Google Scholar] [CrossRef]
- Larkin, A. Effect of inhomogeneities on the structure of the mixed state of superconductors. Sov. Phys. JETP 1970, 31, 784. [Google Scholar]
- Huse, D.A.; Henley, C.L. Pinning and roughening of domain walls in Ising systems due to random impurities. Phys. Rev. Lett. 1985, 54, 2708. [Google Scholar] [CrossRef]
- Kardar, M. Replica Bethe ansatz studies of two-dimensional interfaces with quenched random impurities. Nucl. Phys. B 1987, 290, 582. [Google Scholar] [CrossRef]
- Monthus, C.; Garel, T. Directed polymers and interfaces in random media: Free-energy optimization via confinement in a wandering tube. Phys. Rev. E 2004, 69, 061112. [Google Scholar] [CrossRef]
- Dotsenko, V.S.; Ioffe, L.B.; Gerhkerbein, V.B.; Korshunov, S.E.; Blatter, G. Joint free-energy distribution in the random directed polymer problem. Phys. Rev. Lett. 2008, 100, 050601. [Google Scholar] [CrossRef] [PubMed]
- Dotsenko, V.S.; Gerhkerbein, V.B.; Korshunov, S.E.; Blatter, G. Free-energy distribution functions for the randomly forced directed polymer. Phys. Rev. B 2010, 82, 174201. [Google Scholar] [CrossRef]
- Acosta Diaz, R.; Svaiter, N.F. Finite-size effects in disordered λϕ4 model. Int. J. Mod. Phys. B 2016, 30, 1650207. [Google Scholar] [CrossRef]
- Ingham, A.E. The Distribution of Prime Numbers; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Menezes, G.; Svaiter, N.F. Quantum field theories and prime numbers spectrum. arXiv 2011, arXiv:1211.5198. [Google Scholar]
- Menezes, G.; Svaiter, B.F.; Svaiter, N.F. Riemann zeta zeros and prime number spectra in quantum field theory. Int. J. Mod. Phys. A 2013, 28, 1350128. [Google Scholar] [CrossRef]
- Voros, A. Zeta Functions over Zeros of Zeta Functions; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Svaiter, N.F.; Svaiter, B.F. Casimir effect in a d-dimensional flat space-time and the cut-off method. J. Math. Phys. 1991, 32, 175. [Google Scholar] [CrossRef]
- Svaiter, N.F.; Svaiter, B.F. The analytic regularization zeta function method and the cut-off method in the Casimir effect. J. Phys. A 1992, 25, 979. [Google Scholar] [CrossRef]
- Svaiter, B.F.; Svaiter, N.F. Zero point energy and analytic regularizations. Phys. Rev. D 1993, 47, 4581. [Google Scholar] [CrossRef]
- Cugliandolo, L.F.; Kurchan, J.; Le Doussal, P. Large Time out-of-equilibrium dynamics of a manifold in a random potential. Phys. Rev. Lett. 1996, 76, 2390. [Google Scholar]
- Balents, L.; Fisher, D.S. Large-N expansion of (4 − ϵ)-dimensional oriented manifolds in random media. Phys. Rev. B 1993, 48, 5949. [Google Scholar] [CrossRef]
- Duplantier, B. Statistical mechanics of polymer networks of any topology. J. Stat. Phys. 1989, 54, 581. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acosta Diaz, R.J.; Rodríguez-Camargo, C.D.; Svaiter, N.F. Directed Polymers and Interfaces in Disordered Media. Polymers 2020, 12, 1066. https://doi.org/10.3390/polym12051066
Acosta Diaz RJ, Rodríguez-Camargo CD, Svaiter NF. Directed Polymers and Interfaces in Disordered Media. Polymers. 2020; 12(5):1066. https://doi.org/10.3390/polym12051066
Chicago/Turabian StyleAcosta Diaz, Róbinson J., Christian D. Rodríguez-Camargo, and Nami F. Svaiter. 2020. "Directed Polymers and Interfaces in Disordered Media" Polymers 12, no. 5: 1066. https://doi.org/10.3390/polym12051066
APA StyleAcosta Diaz, R. J., Rodríguez-Camargo, C. D., & Svaiter, N. F. (2020). Directed Polymers and Interfaces in Disordered Media. Polymers, 12(5), 1066. https://doi.org/10.3390/polym12051066