Flow-Through Catalytic Reactors Based on Metal Nanoparticles Immobilized within Porous Polymeric Gels and Surfaces/Hollows of Polymeric Membranes
Abstract
:1. Introduction
2. Flow-Through Catalytic Reactors Fabricated from Porous Hydrogels and Metal Nanoparticles
3. Flow-Through Catalytic Reactors Based on Macroporous Cryogels and Metal Nanoparticles
4. Flow-Through Catalytic Reactors Designed by Modification of the Surface and Hollow of Polymeric Membranes with Metal Nanoparticles
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bekturov, E.A.; Kudaibergenov, S.E. Catalysis by Polymers; Huthig & Wepf Verlag Zug: Heidelberg, Germany; Oxford, UK, 1996; p. 153. [Google Scholar]
- Bekturov, E.A.; Bimendina, L.A.; Kudaibergenov, S.E. Polymeric Complexes and Catalysts; Nauka KazSSR: Almaty, Kazakhstan, 1986. (In Russian) [Google Scholar]
- Dzhardimalieva, G.I.; Uflyand, I.E. Chemistry of Polymeric Metal Chelates; Springer Series in Material Science; Springer International Publishing: Cham, Switzerland, 2018; Volume 257, ISBN 978-3-319-56022-9. [Google Scholar]
- Dzhardimalieva, G.I.; Zharmagambetova, A.K.; Kudaibergenov, S.E.; Uflyand, I.E. Polymer-immobilized clusters and metal nanoparticles in catalysis. Kinetics and Catalysis 2020, 61, 198–223, ISSN 0023-1584. [Google Scholar]
- Ibrayeva, Z.E.; Kudaibergenov, S.E.; Bekturov, E.A. Stabilization of Metal Nanoparticles by Hydrophilic Polymers; Lambert Academic Publishing: Saarbrucken, Germany, 2013. (In Russian) [Google Scholar]
- Sahiner, N. Soft and flexible hydrogel templates of different sizes and various functionalities for metal nanoparticle preparation and their use in catalysis. Prog. Polym. Sci. 2013, 38, 1329–1356. [Google Scholar] [CrossRef]
- Kudaibergenov, S.E.; Tatykhanova, G.S.; Selenova, B.S. Polymer Protected and Gel Immobilized Gold and Silver Nanoparticles in Catalysis. J. Inorg. Organomet. Polym. Mater. 2016, 26, 1198–1211. [Google Scholar] [CrossRef]
- Kung, H.H.; Kung, M.C. Nanotechnology and Heterogeneous Catalysis. In Nanotechnology in Catalysis; Zhou, B., Han, S., Raja, R., Somorjai, G., Eds.; Kluwer Academic/Plenum Publisher: New York, NY, USA, 2003; pp. 1–11. [Google Scholar]
- Ishida, T.; Haruta, M. Supported gold nanoparticles leading to green chemistry. In Nanotechnology in Catalysis: Applications in the Chemical Industry, Energy Development, and Environment Protection; Van de Voorde, M., Sels, B., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2017; pp. 21–36. ISBN 9783527699827. [Google Scholar]
- Wegner, J.; Ceylan, S.; Kirschning, A. Flow Chemistry—A Key Enabling Technology for (Multistep) Organic Synthesis. Adv. Synth. Catal. 2012, 354, 17–57. [Google Scholar] [CrossRef]
- Wiles, C.; Watts, P. Continuous flow reactors: A perspective. Green Chem. 2012, 14, 38–54. [Google Scholar] [CrossRef]
- Kudaibergenov, S.E.; Nuraje, N.; Khutoryanskiy, V.V. Amphoteric nano-, micro-, and macrogels, membranes, and thin films. Soft Matter 2012, 8, 9302–9321. [Google Scholar] [CrossRef]
- Kudaibergenov, S.; Tatykhanova, G.; Bakranov, N.; Tursunova, R. Layer-by-layer thin films and coatings containing metal nanoparticles in catalysis. In Thin Films Processes-Artifacts on Surface Phenomena and Technological Facets; Thirumalai, J., Ed.; InTech: London, UK, 2017; pp. 147–164. [Google Scholar]
- Miura, S.; Kitaoka, T. In situ synthesis of gold nanoparticles on zinc oxides preloaded into a cellulosic paper matrix for catalytic applications. BioResourses 2011, 6, 4990–5000. [Google Scholar]
- Javaid, R.; Kawasaki, S.; Suzuki, A.; Suzuki, T.M. Simple and rapid hydrogenation of p-nitrophenol with aqueous formic acid in catalytic flow reactors. Beilstein J. Org. Chem. 2013, 9, 1156–1163. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, H.; Seto, H.; Akiyoshi, T.; Shibuya, M.; Hoshino, Y.; Miura, Y. Macroporous gel with a permeable reaction platform for catalytic flow synthesis. ACS Omega 2017, 2, 8796–8802. [Google Scholar] [CrossRef] [Green Version]
- Seto, H.; Yoneda, T.; Morii, T.; Hoshino, Y.; Miura, Y.; Murakami, T. Membrane reactor immobilized with palladium-loaded polymer nanogel for continuous-flow Suzuki coupling reaction. AlChE J. 2014. [Google Scholar] [CrossRef]
- Gancheva, T.; Virgilio, N. Tailored Macroporous hydrogels with nanoparticles display enhanced and tunable catalytic activity. ACS Appl. Mater. Interfaces 2018, 10, 21073–21078. [Google Scholar] [CrossRef] [PubMed]
- Gancheva, T.; Virgilio, N. Tailored macroporous hydrogel-nanoparticle nanocomposites for monolithic flow-through catalytic reactions. React. Chem. Eng. Commun. 2019. [Google Scholar] [CrossRef]
- Hapiot, F.; Menuel, S.; Monflier, E. Thermoresponsive hydrogels in catalysis. ACS Catal. 2013, 3, 1006–1010. [Google Scholar] [CrossRef]
- Dolya, N.A.; Kudaibergenov, S.E. Catalysis by thermoresponsive polymers. In Temperature-Responsive Polymers: Chemistry, Properties and Applications; Khutoryanskiy, V.V., Georgiou, T., Eds.; World Scientific Co Inc.: Singapore, 2018; pp. 357–377. [Google Scholar]
- Dolya, N.A.; Musabayeva, B.K.; Yashkarova, M.G.; Kudaibergenov, S.E. Preparation, properties and catalytic activity of palladium nanoparticles immobilized within poly-N-isopropylacrylamide hydrogel matrix. Chem. J. Kazakhstan 2008, 1, 139–146. (In Russian) [Google Scholar]
- Lozinsky, V.I. Cryostructuring of polymeric systems. 50. Cryogels and cryotropic gel-formation: Terms and definitions. Gels 2018, 4, 77. [Google Scholar] [CrossRef] [Green Version]
- Lozinsky, V.I. A brief history of polymeric cryogels. Adv. Polym. Sci. 2014, 263, 1–48. [Google Scholar] [CrossRef]
- Okay, O.; Lozinsky, V.I. Synthesis, structure-property relationships of cryogels. Adv. Polym. Sci. 2014, 263, 103–157. [Google Scholar] [CrossRef]
- Kudaibergenov, S. Physico-chemical, complexation and catalytic properties of polyampholyte cryogels. Gels 2019, 5, 8. [Google Scholar] [CrossRef] [Green Version]
- Klivenko, A.N.; Tatykhanova, G.S.; Nuraje, N.; Kudaibergenov, S. Hydrogenation of p-nitrophenol by gold nanoparticles immobilized within macroporous amphoteric cryogel based on N,N-dimethylaminoethyl methacrylate and methacrylic acid. Bulletin of Karaganda University, Ser. Chem 2015, 4, 10–15. [Google Scholar]
- Tatykhanova, G.S.; Sadakbayeva, Z.K.; Berillo, D.; Galaev, I.; Abdullin, K.A.; Adilov, Z.; Kudaibergenov, S.E. Metal complexes of amphoteric cryogels based on allylamine and methacrylic acid. In Macromolecular Symposia; WILEY-VCH Verlag: Weinheim, Germany, 2012; Volume 317, pp. 18–27. [Google Scholar]
- Kudaibergenov, S.; Adilov, Z.; Berillo, D.; Tatykhanova, G.; Sadakbaeva, Z.; Abdullin, K.; Galaev, I. Novel macroporous amphoteric gels: Preparation and characterization. Express Polym. Lett. 2012, 6, 346–353. [Google Scholar] [CrossRef]
- Kudaibergenov, S.E.; Tatykhanova, G.S.; Klivenko, A.N. Complexation of macroporous amphoteric cryogels based on N,N-dimethylaminoethylmethacrylate and methacrylic acid with dyes, surfactant, and protein. J. Appl. Polym. Sci. 2016, 133, 43784-1–43784-9. [Google Scholar] [CrossRef]
- Sahiner, N.; Demirci, S. The use of M@p(4-VP) and M@p (VI) (M:Co, Ni, Cu) cryogel catalysts as reactor in a glass column in the reduction of p-nitrophenol to p-aminophenol under gravity. Asia Pac. J. Chem. Eng. 2019, 14, e2305. [Google Scholar] [CrossRef]
- Berillo, D. Gold nanoparticles incorporated into cryogel walls for efficient nitrophenol conversion. J. Clean. Prod. 2019. [Google Scholar] [CrossRef]
- Sahiner, N.; Yildiz, S.; Sahiner, M.; Issa, Z.A.; Al-Lohedan, H. Macroporous cryogel metal nanoparticle composites for H2 generation from NaBH4 hydrolysis in seawater. Appl. Surf. Sci. 2015, 354, 388–396. [Google Scholar] [CrossRef]
- Yildiz, S.; Aktas, N.; Sahiner, N. Metal nanoparticle-embedded super porous poly(3-sulfopropyl methacrylate) cryogel for H2 production from chemical hydride hydrolysis. Int. J. Hydrogen Energy 2014, 39, 14690–14700. [Google Scholar] [CrossRef]
- Sahiner, N.; Seven, F. The use of superporous p(AAc (acrylic acid)) cryogels as support for Co and Ni nanoparticle preparation and as reactor in H2 production from sodium borohydride hydrolysis. Energy 2014, 71, 170–179. [Google Scholar] [CrossRef]
- Sahiner, N.; Seven, F. Energy and environmental usage of super porous poly(2-acrylamido-2-methyl-1-propanesulfonic acid) cryogel support. RSC Adv. 2014, 4, 23886–23897. [Google Scholar] [CrossRef]
- Sahiner, N.; Yildiz, S. Preparation of super porous poly(4-vinylpyridine) cryogel and their template metal nanoparticles composites for H2 production via hydrolysis reactions. Fuel Process Technol. 2014, 126, 324–331. [Google Scholar] [CrossRef]
- Klivenko, A.N.; Yergazieva, E.; Kudaibergenov, S.E. Gold nanoparticles stabilized by amphoteric cryogel is perspective flow-through catalytic reactor for oxidation and reduction processes. In Proceedings of the 2016 International Conference on Nanomaterials: Application & Properties (NAP), Lviv, Ukraine, 14–19 September 2016; pp. 02NSA03-1–02NSA03-5. [Google Scholar] [CrossRef]
- Tatykhanova, G.S.; Klivenko, A.N.; Kudaibergenova, G.M.; Kudaibergenov, S.E. Flow-through catalytic reactor based on amphoteric cryogels and gold nanaoparticles. Macromol. Symp. 2016, 363, 49–56. [Google Scholar] [CrossRef]
- Aldabergenov, M.; Dauletbekova, M.; Shakhvorostov, A.; Toleutay, G.; Klivenko, A.; Kudaibergenov, S. Hydrogenation of nitroaromatic compounds by gold nanoparticles immobilized within macroporous amphoteric cryogels in aqueous solutions. J. Chem. Technol. Metall. 2018, 53, 17–26. [Google Scholar]
- Kudaibergenov, S.; Dauletbekova, M.; Toleutay, G.; Kabdrakhmanova, S.; Seilkhanov, T.; Abdullin, K. Hydrogenation of p-nitrobenzoic acid by gold and palladium nanoparticles immobilized within macroporous amphoteric cryogels in aqueous solution. J. Inorg. Organomet. Polym. 2018, 28, 2427–2438. [Google Scholar] [CrossRef]
- Kudaibergenov, S.E.; Aldabergenov, M.Z.; Toleutay, G.; Selenova, B.S.; Kabdrakhmanova, S.K. Method of Obtaining of p-Aminobenzoic Acid. Kazakhstan Innovation Patent No. 33596, 26 April 2019. [Google Scholar]
- Sahiner, N.; Alpaslan, D. Metal-ion-containing ionic liquid hydrogels and their application to hydrogen production. J. Appl. Polym. Sci. 2014, 131, 490183. [Google Scholar] [CrossRef]
- Ajmal, M.; Demirci, S.; Siddiq, M.; Aktas, N.; Sahiner, N. Betaine microgel preparation from [2-(methacryloyloxy)ethyldimethyl(3-sulfopropyl)ammonium hydroxide and its use as a catalyst system. Colloids Surf. A Physicochem. Eng. Asp. 2015, 486, 29–37. [Google Scholar] [CrossRef]
- Yang, W.; Cicek, N.; Ilg, J. State-of-art of membrane bioreactors: Worldwide research and commercial applications in North America. J. Membr. Sci. 2006, 270, 201–211. [Google Scholar] [CrossRef]
- Uygun, M.; Akduman, B.; Ergonul, B.; Uygun, D.A.; Akgol, S.; Denizli, A.J. Immobilization of amyloglucosidase onto macroporous cryogels for continuous glucose production from starch. Biomater. Sci. Polym. Ed. 2015, 26, 1112–1125. [Google Scholar] [CrossRef]
- Milosavic, N.; Prodanovic, R.; Jovanovic, S.; Vujcic, Z. Immobilization of glucoamylase via its carbohydrate moiety on macroporous poly(GMA-co-EGDMA). Enzyme Microb. Technol. 2007, 40, 1422–1426. [Google Scholar] [CrossRef]
- Akpınar, F.; Evli, S.; Güven, G.; Bayraktaroğlu, M.; Kilimci, U.; Uygun, M.; Uygun, D.A. Peroxidase immobilized cryogels for phenolic compounds removal. Appl. Biochem. Biotechnol. 2020, 190, 138–147. [Google Scholar] [CrossRef]
- Ng, L.Y.; Mohammad, A.W.; Leo, C.P.; Hilal, N. Polymeric membranes incorporated with metal/metal oxide nanoparticles: A comprehensive review. Desalination 2013, 308, 15–33. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, C.; Wang, Y. Nanoporous block copolymer membranes immobilized with gold nanoparticles for continuous flow catalysts. Polym. Chem. 2019, 10, 1642–1649. [Google Scholar] [CrossRef]
- Hu, M.X.; Guo, Q.; Li, J.N.; Huang, C.M.; Ren, G.R. Reduction of methylene blue with Ag nanoparticles-modified microporous polypropylene membrane in a flow-through reactor. New J. Chem. 2017. [Google Scholar] [CrossRef]
- Fang, X.; Li, J.; Ren, B.; Huang, Y.; Wang, D.; Liao, Z.; Li, Q.; Wang, L.; Dionysiou, D. Polymeric ultrafiltration membrane with in situ formed nano-silver within the inner pores for simultaneous separation and catalysis. J. Membr. Sci. 2019, 579, 190–198. [Google Scholar] [CrossRef]
- Li, Y.; Yeung, K.L. Polymeric catalytic membrane for ozone treatment of DEET in water. Catal. Today 2018. [Google Scholar] [CrossRef]
- Tsubogo, T.; Yamashita, Y.; Kobayashi, S. Towards efficient asymmetric carbon-carbon bond formation: Continuous flow with chiral heterogeneous catalyst. Chem. Eur. J. 2012, 18, 13624–13628. [Google Scholar] [CrossRef]
- Constatinou, A.; Wu, G.; Venezia, B.; Ellis, P.; Gavriilidis, A. Aerobic oxidation of benzyl alcohol in a continuous catalytic membrane reactor. Top. Catal. 2018. [Google Scholar] [CrossRef] [Green Version]
- Constatinou, A.; Wu, G.; Corredera, A.; Ellis, P.; Bethel, D.; Hutchings, G.J.; Gavriilidis, A. Continuous heterogeneously catalyzed oxidation of benzyl alcohol in a ceramic membrane packed-bed reactor. Org. Process Res. Dev. 2015, 19, 1973–1979. [Google Scholar] [CrossRef] [Green Version]
- Galvanin, F.; Al-Rifai, N.; Cao, E.; Sankar, M.; Hutchings, G.; Gavriilidis, A.; Dua, V. Merging information from batch and continuous flow experiments for the identification of kinetic models of benzyl alcohol oxidation over Au-Pd catalyst. In Proceedings of the 26th European Symposium on Computer Aided Process Engineering—ESCAPE 26, Portoroz, Slovenia, 12–15 June 2016. [Google Scholar] [CrossRef]
- Antony, R.; Marimuthu, R.; Murugavel, R. Bimetallic nanoparticles anchored on core-shell support as an easily recoverable and reusable catalytic system for efficient nitroarene reduction. ACS Omega 2019, 4, 9241–9250. [Google Scholar] [CrossRef] [Green Version]
- Dotzauer, D.M.; Dai, J.; Sun, L.; Bruening, M.L. Catalytic membranes prepared using layer-by-layer adsorption of polyelectrolyte/metal nanoparticle films in porous support. Nano Lett. 2006, 6, 2268–2272. [Google Scholar] [CrossRef]
- Ouyang, L.; Dotzauer, D.M.; Hogg, S.R.; Macanas, J.; Lahitte, J.F.; Bruening, M.L. Catalytic hollow fiber membranes prepared using layer-by-layer adsorption of polyelectrolytes and metal nanoparticles. Catal. Today 2010, 156, 100–106. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Dong, Z.; Na, C. Hierarchical carbon nanotube membrane-supported gold nanoparticles for rapid catalytic reduction of p-nitrophenol. ACS Sustain. Chem. Eng. 2013, 1, 746–752. [Google Scholar] [CrossRef]
- Yamada, Y.M.A.; Watanabe, T.; Beppu, T.; Fukuyama, N.; Torri, K.; Uozumi, Y. Palladium membrane-installed microchannel devices for instantaneous Suzuki-Miyaura cross-coupling. Chem. Eur. J. 2010, 16, 11311–11319. [Google Scholar] [CrossRef]
- Svec, F.; Frechet, M.J. New designs of macroporous polymers and supports: From separation to biocatalysis. Science 1996, 273, 205–211. [Google Scholar] [CrossRef]
Nanocatalyst | PdNPs/MPG-1 | PdNPs/MPG-2 | PdNPs/MPG-3 | PdNPs/Porous Glass Membrane | PdNPs/Silica Particles | PdNPs/C |
---|---|---|---|---|---|---|
TON | 2631 | 2290 | 1333 | 65 | 144 | 26 |
TOF, h−1 (t = 0.1 h) | 27.4 | 16.1 | 7.8 | - | - | - |
Pd leaching, % | 0 | 0 | 0 | 5.0 | 2.9 | 1.6 |
Macroporous Flow-Through Catalyst | Substrate | Ea, kJ·mol−1 | TON | TOF, h−1 | Run | Ref. |
---|---|---|---|---|---|---|
DMAEM-MAA/AuNPs | 4-NP | 7.52 | 38.17 | 21.56 | 50 | [38,40] |
DTT | - | 985.2 | 412.2 | 10 | [40] | |
p-NBA | 13.8 | - | - | 5 | [41] | |
DMAEM-MAA/PdNPs | p-NBA | 38.83 | - | - | 10 | [41] |
P4VP/CoNPs | p-NBA | 18.9 ± 1.3 | 131.4 | 6 | [31] | |
PVI/CoNPs | 25.4 ± 1.8 | 82.2 | 8 |
Macroporous Batch-Type Catalyst | Substrate | Ea, kJ·mol−1 | TON | Run | Ref. |
---|---|---|---|---|---|
P(APTMACl)/[CuCl4]−2 | NaBH4 | 61.9 | - | - | [43] |
P(APTMACl)/[CoCl4]−2 | 52.2 | - | 10 | ||
P(APTMACl)/[NiCl4]−2 | 30.9 | - | - | ||
P(SBMA) microgel/NiNPs | 4-NP | 35.64 | - | 3 | [44] |
P4VP/NiNPs | NaBH4 | - | 0.7 ± 0.2 | - | [37] |
P4VP/CoNPs | - | 2.1 ± 0.4 | - |
State of Enzyme | Km, mg·mL−1 | Vmax, µmol·min−1 |
---|---|---|
Free | 2.743 ± 0.075 | 2.020 ± 0.059 |
Immobilized | 0.865 ± 0.067 | 0.496 ± 0.054 |
Membrane Catalyst | Substrate | Conversion Degree, % | Flow Rate, mL·min−1* | Refs |
---|---|---|---|---|
PDMAEM-b-PS/ AuNPs/PVDF | 4-NP | 88–100 | 0.5 | [49] |
Rhodamine B | 91 | 0.5 | ||
Methyl orange | 88 | 0.5 | ||
MPPM/AgNPs | Methylene blue | 60 | [50] | |
PES/TA-AgNPs | 4-NP | 98 | 239.8 L·m−2·h−1 | [51] |
Ceramic/ Au-Pd | Benzaldehyde | 25 | - | [54] |
Fe3O4@CS/AgNi | Nitroaromatic compounds | 100 | 0.56 | [57] |
*Excepting the flow rate of PES/TA-AgNPs |
Catalyst | AuNPs Size, nm | Rate Constant *, µm·s−1 | Pore Size, nm | Refs |
---|---|---|---|---|
AuNPs suspended in batch system | ||||
Alumina membrane | 12 | 140 | ~2·102 | [58] |
HCNM | 13.3 ± 2.4 | 111 ± 2 | ~1·104 | [60] |
AuNPs supported in flow-through reactors | ||||
Alumina membrane | 12 | 180 | ~2·102 | [58] |
HCNM | 13.3 ± 2.4 | 62 ± 4 | ~1·104 | [60] |
* The rate constants are normalized to the surface area of nanoparticles |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kudaibergenov, S.E.; Dzhardimalieva, G.I. Flow-Through Catalytic Reactors Based on Metal Nanoparticles Immobilized within Porous Polymeric Gels and Surfaces/Hollows of Polymeric Membranes. Polymers 2020, 12, 572. https://doi.org/10.3390/polym12030572
Kudaibergenov SE, Dzhardimalieva GI. Flow-Through Catalytic Reactors Based on Metal Nanoparticles Immobilized within Porous Polymeric Gels and Surfaces/Hollows of Polymeric Membranes. Polymers. 2020; 12(3):572. https://doi.org/10.3390/polym12030572
Chicago/Turabian StyleKudaibergenov, Sarkyt E., and Gulzhian I. Dzhardimalieva. 2020. "Flow-Through Catalytic Reactors Based on Metal Nanoparticles Immobilized within Porous Polymeric Gels and Surfaces/Hollows of Polymeric Membranes" Polymers 12, no. 3: 572. https://doi.org/10.3390/polym12030572
APA StyleKudaibergenov, S. E., & Dzhardimalieva, G. I. (2020). Flow-Through Catalytic Reactors Based on Metal Nanoparticles Immobilized within Porous Polymeric Gels and Surfaces/Hollows of Polymeric Membranes. Polymers, 12(3), 572. https://doi.org/10.3390/polym12030572