Influence of the Chitosan and Rosemary Extract on Fungal Biodegradation of Some Plasticized PLA-Based Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fungal Material
2.3. Fungal Strains and Culture Conditions
2.4. Investigation Methods
2.4.1. Scanning Electron Microscopy (SEM)
2.4.2. Biochemical Assays
2.4.3. ATR-FTIR Spectroscopy
2.4.4. Gel Permeation Chromatography (GPC)
2.4.5. Differential Scanning Calorimetry (DSC)
2.4.6. Thermogravimetry (TG)
3. Results and Discussion
3.1. Visual Inspection and Scanning Electron Microscopy (SEM)
3.2. Weight Loss Measurements
3.3. Biochemical Results
3.4. GPC Results—Average Molecular Weight Determination
3.5. Structural Changes—Fourier-Transform Infrared Spectroscopy (ATR-FTIR) Results
3.6. Thermal Behavior
3.7. Thermogravimetry (TG/DTG) Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Moharir, R.V.; Kumar, S. Challenges associated with plastic waste disposal and allied microbial routes for its effective degradation: A comprehensive review. J. Clean. Prod. 2019, 208, 65–76. [Google Scholar] [CrossRef]
- Majid, I.; Thakur, M.; Nanda, V. Biodegradable Packaging Materials. Available online: https://doi.org/10.1016/b978-0-12-803581-8.10356-x (accessed on 17 February 2020).
- Muniyasamy, S.; Ofosu, O.; Jacob John, M.; Anandjiwala, R.D. Mineralization of poly(lactic acid) (PLA), poly(3-hydroxybutyrate-co-valerate) (PHBV) and PLA/PHBV Blend in compost and soil environments. J. Renew. Mater. 2016, 4, 133–145. [Google Scholar] [CrossRef]
- Ohkita, T.; Lee, S.H. Thermal degradation and biodegradability of poly(lactic acid)/corn starch biocomposites. J. Appl. Polym. Sci. 2006, 100, 3009–3017. [Google Scholar] [CrossRef]
- Muniyasamy, S.; Ofosu, O.; John, M.J.; Anandjiwala, R.D. Mineralization of Poly(lactic acid) (PLA), Poly (3-hydroxybutyrate-co-valerate) (PHBV) and PLA/PHBV Blend in Compost and Soil Environments. Project: Compostability and Biodegradation of Bioplastics and Biocomposites. January 2016. Available online: https://www.researchgate.net/publication/304615824 (accessed on 23 January 2020).
- Available online: https://all3dp.com/2/is-pla-biodegradable-what-you-really-need-to-know/ (accessed on 17 February 2020).
- Tsuji, H.; Miyauchi, S. Enzymic Hydrolysis of Polylactic Acid. Engineering in Medicine. Biomacromolecules 2001, 2, 597–604. [Google Scholar] [CrossRef]
- Ratner, B.D.; Hoffman, A.S.; Schoen, F.J.; Lemons, J.E. Biomaterials Science: An Introduction to Materials in Medicine 2013, 3rd ed.; Academic Press: Oxford, UK, 2013; Available online: http://www.sciencedirect.com/science/book/9780123746269 (accessed on 23 January 2020).
- Nampoothiri, K.M.; Nair, N.R.; John, R.P. An overview of the recent developments in polylactide (PLA) research. Bioresour. Technol. 2010, 101, 8493–8501. [Google Scholar] [CrossRef]
- Qi, X.; Rena, Y.; Wang, X. New advances in the biodegradation of Poly (lactic) acid. Int. Biodeterior. Biodegrad. 2017, 117, 215–223. [Google Scholar] [CrossRef]
- Lim, H.-A.; Raku, T.; Tokiwa, Y. Hydrolysis of polyesters by serine proteases. Biotechnol. Lett. 2005, 27, 459–464. [Google Scholar] [CrossRef]
- Tokiwa, Y.; Calabia, B.P. Biodegradability and biodegradation of poly (lactide). Appl. Microbiol. Biotechnol. 2006, 72, 244–251. [Google Scholar] [CrossRef]
- Kawai, F.; Nakadai, K.; Nishioka, E.; Nakajima, H.; Ohara, H.; Masaki, K.; Iefuji, H. Different enantioselectivity of two types of poly (lactic acid) depolymerases toward poly(l-lactic acid) and poly(d-lactic acid). Polym. Degrad. Stab. 2011, 96, 1342–1348. [Google Scholar] [CrossRef]
- Apinya, T.; Sombatsompop, N.; Prapagdee, B. Selection of a Pseudonocardia sp. RM423 that accelerates the biodegradation of poly (lactic) acid in submerged cultures and in soil microcosms. Int. Biodeterior. Biodegrad. 2015, 99, 23–30. [Google Scholar] [CrossRef]
- Kawai, F. Polylactic Acid (PLA)-degrading Microorganisms and PLA Depolymerases. In Green Polymer Chemistry: Biocatalysis and Biomaterials; ACS Symposium Series; American Chemical Society: Washington DC, USA, 2010; Chapter 27; Volume 1043, pp. 405–414. ISBN 9780841225817. eISBN: 9780841225824. [Google Scholar]
- Vimala, P.; Mathew, L. Biodegradation of polyethylene using bacillus subtilis. Procedia Technol. 2016, 24, 232–239. [Google Scholar] [CrossRef] [Green Version]
- Pattanasuttichonlakul, W.; Sombatsompop, N.; Prapagdee, B. Accelerating biodegradation of PLA using microbial W. consortium from dairy wastewater sludge combined with PLA-degrading bacterium. Int. Biodeterior. Biodegrad. 2018, 132, 74–83. [Google Scholar] [CrossRef]
- Jarerat, A.; Tokiwa, Y. Degradation of poly (L-lactide) by a fungus. Macromol. Biosci. 2001, 1, 136–140. [Google Scholar] [CrossRef]
- Karamanlioglu, M.; Houlden, A.; Robson, G.D.; Karamanlioglu, M. Isolation and characterisation of fungal communities associated with degradation and growth on the surface of poly (lactic) acid (PLA) in soil and compost. Int. Biodeterior. Biodegrad. 2014, 95, 301–310. [Google Scholar] [CrossRef]
- Saadi, Z.; Rasmont, A.; Cesar, G.; Bewa, H.; Benguigui, L. Fungal degradation of poly(L-lactide) in soil and in compost. J. Polym. Environ. 2012, 20, 273–282. [Google Scholar] [CrossRef]
- Vivi, V.K.; Martins-Franchetti, S.M.; Attili-Angelis, D. Biodegradation of PCL and PVC: Chaetomium globosum (ATCC 16021) activity. Folia Microbiol. 2019, 64, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Wanmolee, W.; Sornlake, W.; Rattanaphan, N.; Suwannarangsee, S.; Laosiripojana, N.; Champreda, V. Biochemical characterization and synergism of cellulolytic enzyme system from Chaetomium globosum on rice straw saccharification. BMC Biotechnol. 2016, 16, 82. [Google Scholar] [CrossRef] [Green Version]
- Zhai, X.; Luo, D.; Li, X.; Han, T.; Jia, M.; Kong, Z.; Ji, J.; Rahman, K.; Qin, L.; Zheng, C. Endophyte chaetomium globosum D38 promotes bioactive constituents accumulation and root production in salvia miltiorrhiza. Front. Microbiol. 2018, 8, 2694. [Google Scholar] [CrossRef]
- Morel, M.; Ngadin, A.A.; Jacquot, J.-P.; Gelhaye, É. Reactive oxygen species in Phanerochaete chrysosporium relationship between extracellular oxidative and intracellular antioxidant systems. Adv. Bot. Res. 2009, 52, 153–186. [Google Scholar]
- Stoleru, E.; Hitruc, E.G.; Vasile, C.; Oprica, L. Biodegradation of poly (lactic acid)/chitosan stratified composites in presence of the Phanerochaete chrysosporium fungus. Polym. Degrad. Stab. 2017, 143, 118–129. [Google Scholar] [CrossRef]
- Lipsa, R.; Tudorachi, N.; Darie-Nita, R.N.; Oprică, L.; Vasile, C.; Chiriac, A. Biodegradation of poly(lactic acid) and some of its based systems with Trichoderma viride. Int. J. Biol. Macromol. 2016, 88, 515–526. [Google Scholar] [CrossRef] [PubMed]
- Durazzo, A.; Lucarini, M.; Souto, E.; Cicala, C.; Caiazzo, E.; Izzo, A.A.; Novellino, E.; Santini, A. Polyphenols: A concise overview on the chemistry, occurrence, and human health. Phytother. Res. 2019, 33, 2221–2243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durazzo, A.; D’Addezio, L.; Camilli, E.; Piccinelli, R.; Turrini, A.; Marletta, L.; Marconi, S.; Lucarini, M.; Lisciani, S.; Gabrielli, P.; et al. From plant compounds to botanicals and back: A current snapshot. Molecules 2018, 23, 1844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasile, C.; Stoleru, E.; Darie-Nita, R.N.; Dumitriu, R.P.; Pamfil, D.; Tartau, L. Biocompatible materials based on plasticized Poly (lactic acid), chitosan and rosemary ethanolic extract I. Effect of chitosan on the properties of plasticized Poly (lactic acid) materials. Polymers 2019, 11, 941. [Google Scholar] [CrossRef] [Green Version]
- Vasile, C.; Pamfil, D.; Râpă, M.; Darie-Niţă, R.N.; Mitelut, A.C.; Popa, E.E.; Popescu, P.A.; Draghici, M.C.; Popa, M.E. Study of the soil burial degradation of some PLA/CS biocomposites. Compos. Part B Eng. 2018, 142, 251–262. [Google Scholar] [CrossRef]
- Manoliu, A.; Balan, M.; Oprica, L.; Grădinaru, P. The evolution of catalase and peroxidase activity in Phanerochaete chrysosporium grown on media containing beech and fir sawdust and under the influence of some amino acids. Analele Ştiinţifice ale Universităţii Alexandru Ioan Cuza Secţiunea Genetică si Biologie Moleculară 2010, XI, 47–52. [Google Scholar]
- Sinha, A.K. Colorimetric assay of catalase. Anal. Biochem. 1972, 47, 389–394. [Google Scholar] [CrossRef]
- Hodges, D.M.; DeLong, J.M.; Forney, C.F.; Prange, R.K. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 1999, 207, 604–611. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Auras, R.A.; Singh, S.P.; Singh, J.J. Evaluation of oriented poly (lactide) polymers vs. existing PET and oriented PS for fresh food service containers. Packag. Technol. Sci. 2005, 18, 207–216. [Google Scholar] [CrossRef]
- Shah, A.A.; Hasan, F.; Hameed, A.; Ahmed, S. Biological degradation of plastics: A comprehensive review. Biotechnol. Adv. 2008, 26, 246–265. [Google Scholar] [CrossRef] [PubMed]
- da Silva Gois, G.; de Andrade, M.F.; Silva Garcia, S.M.; Vinhas, G.M.; Santos, A.S.F.; Medeiros, E.S.; Oliveira, J.E.; de Almeida, Y.M.B. Soil biodegradation of PLA/CNW nanocomposites modified with ethylene oxide derivatives. Mater. Res. 2017, 20 (Suppl. 2), 899–904. [Google Scholar] [CrossRef] [Green Version]
- Tsuji, H.; Miyauchi, S. Enzymatic hydrolysis of poly (lactide) s: Effects of molecular weight, L-lactide content, and enantiomeric and diastereoisomeric polymer blending. Biomacromolecules. 2001, 2, 597–604. [Google Scholar] [CrossRef] [PubMed]
- Geweely, N.S.; Ouf, S.A. Enhancement of fungal degradation of starch based plastic polymer by laser-induced plasma. Afr. J. Microbiol. Res. 2011, 5, 3273–3281. [Google Scholar]
- Odebode, A.; Adekunle, A. Biomarkers of oxidative stress as indicators of fungi environmental pollution in Balb/c albino mice monitored from South West. Niger. J. Pathog. 2019, 2019, 6561520. [Google Scholar] [CrossRef]
- Hancock, J.T.; Desikan, R.; Neill, S.J. Role of reactive oxygen species in cell signalling pathways. Biochem. Biomed. Asp. Oxidative Modif. 2001, 29, 345–349. [Google Scholar] [CrossRef]
- Das, K.; Roychoudhury, A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci. 2014, 2, 53. [Google Scholar] [CrossRef] [Green Version]
- Cavia-Saiz, M.; Busto, M.D.; Pilar-Izquierdo, M.C.; Ortega, N.; Perez-Mateos, M.; Muñiz, P. Antioxidant properties, radical scavenging activity and biomolecule protection capacity of flavonoid naringenin and its glycoside naringin: A comparative study. J. Sci. Food Agric. 2010, 90, 1238–1244. [Google Scholar] [CrossRef]
- Banskota, A.H.; Sperker, S.; Stefanova, R.; McGinn, P.J.; O’Leary, S.J.B. Antioxidant properties and lipid composition of selected microalgae. J. Appl. Phycol. 2019, 31, 309–318. [Google Scholar] [CrossRef]
- Vochita, G.; Oprica, L.; Gherghel, D.; Mihai, C.T.; Boukherroub, R.; Lobiuc, A. Graphene oxide effects in early ontogenetic stages of Triticum aestivum L. seedlings. Ecotoxicol. Environ. Saf. 2019, 181, 345–352. [Google Scholar] [CrossRef]
- Ighodaroa, O.M.; Akinloie, O. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid, kinloye. Alex. J. Med. 2018, 54, 287–293. [Google Scholar] [CrossRef] [Green Version]
- Chelikani, P.; Fita, I.; Loewen, P.C. Diversity of structures and properties among catalases. Cell. Mol. Life Sci. 2004, 61, 192–208. [Google Scholar] [CrossRef] [PubMed]
- Hojati, M.; Moderres, S.A.M.; Karimi, M.; Ghanati, F. Responses of growth and antioxidant system in Carthamustinctorius L. under water deficit stress. Acta Physiol. Plant 2010, 33, 105–115. [Google Scholar] [CrossRef]
- Hesham, A.; Eissa, A. Effect of chitosan coating on shelf life and quality of fresh-cut mushroom. J. Food Qual. 2007, 30, 623–645. [Google Scholar]
- Grotto, D.; Santa Maria, L.; Valentini, J.; Paniz, C.; Schmitt, G.; Garcia, S.C.; Pomblum, V.J.; Rocha, J.B.T.; Farina, M. Importance of the lipid peroxidation biomarkers and methodological aspects for malondialdehyde quantification. Quím. Nova São Paulo 2009, 32, 169–174. [Google Scholar] [CrossRef] [Green Version]
- Jain, M.; Mathur, G.; Koul, S.; Sarin, N.B. Ameliorative effects of proline on salt stress-induced lipid peroxidation in cell lines of groundnut (Arachis hypogea L.). Plant Cell. Rep. 2001, 20, 463–468. [Google Scholar] [CrossRef]
- Glaser, J.A. Biological degradation of polymers in the environment. In Plastics in the Environment; Gomiero, A., Ed.; Intechopen: London, UK, 2019; Chapter 5; p. 675. ISBN 978-1-78984-045-2. [Google Scholar]
- Stloukal, P.; Verney, V.; Commereuc, S.; Rychly, J.; Matisova-Rychla, L.; Pis, V.; Koutny, M. Assessment of the interrelation between photooxidation and biodegradation of selected polyesters after artificial weathering. Chemosphere 2012, 88, 1214–1219. [Google Scholar] [CrossRef]
- Gonçalves, C.M.B.; Coutinho, J.A.P.; Marrucho, I.M. Optical properties. In Poly(lactic acid): Synthesis, Structures, Properties, Processing, and Applications; Auras, R., Lim, L.-T., Selke, S.E.M., Tsuji, H., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2010; pp. 97–111. [Google Scholar]
- Stipanelov Vrandecic, N.; Erceg, M.; Jakic, M.; Klaric, I. Kinetic analysis of thermal degradation of poly (ethylene glycol) and poly (ethylene oxide)s of different molecular weight. Thermochim. Acta 2010, 498, 71–80. [Google Scholar] [CrossRef]
- Darie-Nita, R.N.; Vasile, C.; Stoleru, E.; Pamfil, D.; Zaharescu, T.; Tartau, L.; Tudorachi, N.; Brebu, M.A.; Pricope, G.M.; Dumitriu, R.P.; et al. Evaluation of the rosemary extract effect on the properties of polylactic acid-based materials. Materials 2018, 11, 1825. [Google Scholar] [CrossRef] [Green Version]
- Meaurio, E.; Lopez-Rodrıguez, N.; Sarasua, J.R. Infrared spectrum of Poly (L-lactide): Application to crystallinity studies. Macromolecules 2006, 39, 9291–9301. [Google Scholar] [CrossRef]
- Djonlagic, J.; Nikolic, M.S. Biodegradable polyesters: Synthesis and physical properties. In Handbook of Applied Biopolymer Technology: Synthesis, Degradation and Applications; Sharma, S.K., Mudhoop, A., Eds.; RSC: London, UK, 2011; Chapter 6; pp. 149–196. [Google Scholar]
- Rouillon, C.; Bussiere, P.-O.; Desnoux, E.; Collin, S.; Vial, C.; Therias, S.; Gardette, J.-L. Is Carbonyl Index a quantitative probe to monitor polypropylene photodegradation? Polym. Degrad. Stab. 2016, 128, 200–208. [Google Scholar] [CrossRef]
- Su, Z.; Li, Q.; Liu, Y.; Hu, G.-H.; Wu, C. Multiple melting behavior of Poly (lactic acid) filled with modified carbon black. J. Polym. Sci. Part B Polym. Phys. 2009, 47, 1971–1980. [Google Scholar] [CrossRef]
- Ding, D.; Tao, Y.; Yan, L. Biodegradation of jute/poly (lactic acid) composites by fungi. Sci. China Tech. Sci. 2018, 61, 1705–1712. [Google Scholar] [CrossRef]
- Musuc, A.M.; Badea-Doni, M.; Jecu, L.; Rusu, A.; Popa, V.T. FTIR, XRD, and DSC analysis of the rosemary extract effect on polyethylene structure and biodegradability. J. Therm. Anal. Calorim. 2013, 114, 169–177. [Google Scholar] [CrossRef]
- Backes, E.H.; Pires, L.D.N.; Costa, L.C.; Passador, F.R.; Pessan, L.A. Analysis of the degradation during melt processing of PLA/Biosilicate® composites. J. Compos. Sci. 2019, 3, 52. [Google Scholar] [CrossRef] [Green Version]
- Khana, S.; Nadir, S.; Shah, Z.U.; Shah, A.A.; Karunarathna, S.C.; Xu, J.; Khan, A.; Munir, S.; Hasan, F. Biodegradation of polyester polyurethane by Aspergillus tubingensis. Environ. Pollut. 2017, 225, 469–480. [Google Scholar] [CrossRef]
Samples Description and Codes | ||
---|---|---|
Before Biodegradation | After Biodegradation (7 or 14 days) | |
Chaetomium globosum (CG) | Phanerochaete chrysosporium (PC) | |
Native poly(lactic acid) (PLA) | PLA/7d/CG or PLA/14d/CG | PLA/7d/PC or PLA/14d/PC |
PLA plasticized with polyethylene glycol (PLA/PEG) | PLA/PEG/7d/CG or PLA/PEG/14d/CG | PLA/PEG/7d/PC or PLA/PEG/14d/PC |
PLA containing powdered rosemary ethanolic extract (R) 0.5% (PLA/R) | PLA/R/7d/CG or PLA/R/14d/CG | PLA/R/7d/PC or PLA/R/14d/PC |
PLA plasticized with PEG containing powdered rosemary ethanolic extract (PLA/PEG/R) | PLA/PEG/R/7d/CG or PLA/PEG/R/14d/CG | PLA/PEG/R/7d/PC or PLA/PEG/R/14d/PC |
PLA/PEG containing 3wt% chitosan (PLA/PEG/3CS) | PLA/PEG/3CS/7d/CG or PLA/PEG/3CS/14d/CG | PLA/PEG/3CS/7d/PC or PLA/PEG/3CS/14d/PC |
PLA/PEG containing 6wt% chitosan (PLA/PEG/6CS) | PLA/PEG/6CS/7d/CG or PLA/PEG/6CS/14d/CG | PLA/PEG/6CS/7d/PC or PLA/PEG/6CS/14d/PC |
PLA/PEG/R containing 3wt% chitosan and powdered rosemary ethanolic extract (PLA/PEG/3CS/R) | PLA/PEG/3CS/R/7d/CG or PLA/PEG/3CS/R/14d/CG | PLA/PEG/3CS/R/7d/PC or PLA/PEG/3CS/R/14d/PC |
PLA/PEG/R containing 6wt% chitosan powdered rosemary ethanolic extract (PLA/PEG/6CS/R) | PLA/PEG/6/CS/R/7d/CG or PLA/PEG/6CS/R/14d/CG | PLA/PEG/6/CS/R/7d/PC or PLA/PEG/6CS/R/14d/PC |
Sample | Weight Loss (%) | |||
---|---|---|---|---|
Chaetomium globosum | Phanerochaete chrysosporium | |||
7 days | 14 days | 7 days | 14 days | |
PLA | 18 | 22 | 9 | 18 |
PLA/PEG | 43 | 57 | 42 | 49 |
PLA/R | 31 | 42 | 25 | 33 |
PLA/PEG/R | 42 | 49 | 40 | 47 |
PLA/PEG/3CS | 100 | 100 | 100 | 100 |
PLA/PEG/6CS | 100 | 100 | 100 | 100 |
PLA/PEG/3CS/R | 100 | 100 | 100 | 100 |
PLA/PEG/6CS/R | 100 | 100 | 100 | 100 |
Sample | Mn × 102 g/mol | Mw × 102 g/mol | Mz × 102 g/mol | Mw/Mn | Mz/Mw | [η] mL/g × 102 |
---|---|---|---|---|---|---|
PLA | 1150 | 2170 | 3670 | 1.878 | 1.695 | 1.447 |
PLA/14d/CG | 626 | 1000 | 1540 | 1.598 | 1.539 | 0.739 |
PLA/14d/PC | 526.2 | 889.0 | 1404 | 1.690 | 1.579 | 0.688 |
PLA/PEG | 92.2 | 110.2 | 138.2 | 1.169 | 1.254 | 0.061 |
38.46 | 44.28 | 49.56 | 1.151 | 1.119 | 0.131 | |
PLA/PEG/14d/CG | 87.1 | 103.2 | 123.1 | 1.183 | 1.193 | 0.06 |
44.18 | 47.01 | 49.99 | 1.064 | 1.063 | 0.188 | |
PLA/PEG/14d/PC | 84.4 | 88.48 | 92.94 | 1.049 | 1.050 | 0.012 |
39.87 | 43.79 | 31.29 | 1.098 | 1.101 | 0.619 | |
PLA/R | 1060 | 1788 | 2864 | 1.687 | 1.602 | 1.293 |
PLA/R/14d/CG | 456.2 | 768.0 | 1209 | 1.683 | 1.574 | 0.635 |
PLA/R/14d/PC | 374.1 | 635.3 | 984.9 | 1.698 | 1.550 | 0.567 |
PLA/PEG/R | 95.20 | 113.0 | 140.8 | 1.187 | 1.247 | 0.071 |
39.40 | 44.85 | 50.03 | 1.138 | 1.115 | 0.016 | |
PLA/PEG/R/14d/CG | 88.54 | 92.92 | 97.61 | 1.050 | 1.050 | 0.019 |
49.64 | 51.94 | 54.49 | 1.046 | 1.049 | 0.019 | |
PLA/PEG/R/14d/PC | 86.29 | 91.26 | 96.39 | 1.058 | 1.056 | 0.382 |
44.36 | 47.05 | 50.28 | 1.061 | 1.069 | 0.0058 |
Bands Wavenumber (cm−1) | Band Assignment | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PLA | PLA/PEG | PLA/R | PLA/PEG/R | |||||||||
Undegraded | Degraded | Undegraded | Degraded | Undegraded | Degraded | Undegraded | Degraded | |||||
CG | PC | CG | PC | CG | PC | CG | PC | |||||
- | - | 3498 | 3437 | - | - | 3511 | 3518 | - | - | - | 3564 | ν(OH)free |
- | 3323 | - | - | 3282 | 3271 | - | - | 3350 | 3399 | 3402 | 3359 | ν(OH) H-bonded |
2996 | 2999 | 3001 | - | 2997 | 3001 | 2997 | 3001 | 2999 | - | 2999 | 3001 | νasCH3 |
2946 | 2947 | 2947 | 2945 | 2947 | 2947 | 2946 | 2943 | 2947 | 2945 | 2947 | - | νasCH3 |
- | - | - | 2884 | - | - | - | - | - | 2884 | - | - | νCH |
1749 | 1753 | 1754 | 1749 | 1754 | 1754 | 1750 | 1755 | 1754 | 1749 | 1754 | 1754 | ν(C=O) |
- | 1652 | 1654 | - | 1647 | 1654 | - | 1666 | 1635 | - | 1654 | 1627 | Amide(C=O) |
- | - | 1631 | - | - | - | - | - | 1584 | - | - | - | νNH |
- | 1546 | 1523 | - | 1542 | 1541 | - | 1523 | 1519 | - | 1527 | 1517 | νNH |
- | - | - | 1467 | - | - | - | - | 1467 | - | - | CH bending | |
1452 | 1452 | 1452 | 1454 | 1452 | 1452 | 1452 | 1452 | 1452 | 1454 | 1454 | 1454 | δasCH3 |
- | - | - | 1413 | - | - | - | - | - | 1416 | - | - | |
1381 | 1385 | 1382 | 1383 | 1382 | 1384 | 1382 | 1379 | 1382 | 1384 | 1385 | 1388 | δsCH3 |
1361 | 1359 | 1361 | 1359 | 1359 | 1359 | 1360 | 1359 | 1361 | 1359 | 1361 | 1361 | δlCH + δsCH3 |
- | - | - | 1341 | - | - | - | - | - | 1341 | - | - | δsCH3 |
1303 | 1299 | 1299 | 1279 | 1298 | 1298 | 1302 | 1299 | 1298 | 1280 | 1298 | 1298 | δ2CH |
1266 | 1267 | 1267 | 1240 | 1267 | 1267 | 1267 | 1267 | 1265 | 1240 | 1267 | 1265 | δCH + νCOC |
1211 | 1209 | 1211 | 1212 | 1209 | 1209 | 1210 | 1209 | 1210 | 1211 | 1209 | 1210 | νasCOC |
1182 | 1184 | 1184 | 1182 | 1186 | 1186 | 1182 | 1184 | 1184 | 1181 | 1184 | 1186 | νasCOC |
1129 | 1130 | 1130 | 1146 | 1130 | 1130 | 1129 | 1130 | 1130 | 1146 | 1130 | 1130 | rasCH3 |
1081 | 1083 | 1085 | 1101 | 1089 | 1091 | 1081 | 1083 | 1085 | 1097 | 1087 | 1089 | νsCOC |
- | - | - | 1061 | - | - | - | - | - | 1060 | - | - | νCOC |
1044 | 1043 | 1045 | 1044 | 1043 | 1045 | 1044 | 1043 | 1045 | 1042 | 1043 | 1043 | νC–CH3 |
954 | 955 | 954 | 961 | 954 | 954 | 954 | 952 | 954 | 961 | 952 | 953 | rCH3 + νCC |
- | 920 | 921 | 948 | 920 | 921 | 921 | 921 | 949 | 921 | 921 | rCH3 + νCC | |
867 | 869 | 869 | 870 | 869 | 869 | 868 | 869 | 869 | 871 | 869 | 869 | νC–COO |
- | - | - | 843 | - | - | - | - | - | 842 | - | - | νC-O + rCH2 |
755 | 754 | 756 | 757 | 754 | 754 | 755 | 754 | 754 | 757 | 754 | 754 | δC=O |
692 | 690 | 692 | 694 | 690 | 690 | 700 | 692 | 692 | 692 | 690 | 692 | γC=O |
Samples Code | Tg (°C) | Tcc (°C) | Tm | ΔHm (J/g) | Xc (%) |
---|---|---|---|---|---|
PLA | 66 | 123.0 | 151.8 | −10.23 | 11.05 |
PLA/14d/CG | 64.1 | Two peaks 148.7 156.9 | −12.13 −18.37 | 32.76 | |
PLA/14d/PC | 65.3 | Two peaks 149.3 157.3 | −13.98 −19.26 | 35.70 | |
PLA/PEG | 44.4 | 128.9sh 138.9 144.7sh | −26.21 | 28.15 | |
PLA/PEG/14d/CG | 50.3 | 147.9 | −53.76 | 57.73 | |
PLA/PEG/14d/PC | 46.5 | 146.6 | −44.39 | 47.95 | |
PLA/R | 66.2 | 125.4 | 152.2 | 7.81 −13.09 | 14.06 |
PLA/R/14d/CG | 64.4 | Two peaks 148.6 157.1 | −13.73 −17.53 | 33.57 | |
PLA/R/14d/PC | 64.4 | Two peaks 148.7 157.0 | −18.74 −17.69 | 39.13 | |
PLA/PEG/R | 48.4 | 129.0sh 138.3 | −12.03 | 12.92 | |
PLA/PEG/R/14d/CG | 49.5 | 138.8 | −61.43 | 65.98 | |
PLA/PEG/R/14d/PC | 46 | Two peaks 116.0 139.9 | −49.52 | 53.19 |
Samples Code | TG/DTG Results | |||
---|---|---|---|---|
Tonset (°C) | Tpeak (°C) | Tf (°C) | Δm (%) | |
PLA | 279 | 362 | 383 | 98.3 |
PLA/14d/CG | 235 | 357 | 384 | 91.52 |
PLA/14d/PC | 248 | 350 | 367 | 95 |
PLA/PEG | 152 | 342 | 392 | 95 |
PLA/PEG/14d/CG | 156 | 265 | 327 | 90.33 |
PLA/PEG/14d/PC | 157 | 303 | 367 | 93.9 |
PLA/R | 282 | 362 | 390 | 94.0 |
393 | 417s | 438 | ||
PLA/R/14d/CG | 251 | 356 | 382 | 95.66 |
PLA/R/14d/PC | 243 | 352 | 371 | 94.75 |
PLA/PEG/R | 106 | 146 | 180 | 13.43 |
244 | 364; 405sh | 436 | 84.87 | |
PLA/PEG/R/14d/CG | 108 | 132 | 149 | 2.27 |
160 | 287 | 316 | 88.6 | |
325 | 355 | 382 | 4.99 | |
455 | 482 | 507 | 3.08 | |
PLA/PEG/R/14d/PC | 111 | 143 | 143 | 5.35 |
160 | 292 | 325 | 87.66 | |
343 | 358 | 388 | 2.95 | |
507 | 527 | 559 | 0.89 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stoleru, E.; Vasile, C.; Oprică, L.; Yilmaz, O. Influence of the Chitosan and Rosemary Extract on Fungal Biodegradation of Some Plasticized PLA-Based Materials. Polymers 2020, 12, 469. https://doi.org/10.3390/polym12020469
Stoleru E, Vasile C, Oprică L, Yilmaz O. Influence of the Chitosan and Rosemary Extract on Fungal Biodegradation of Some Plasticized PLA-Based Materials. Polymers. 2020; 12(2):469. https://doi.org/10.3390/polym12020469
Chicago/Turabian StyleStoleru, Elena, Cornelia Vasile, Lăcramioara Oprică, and Onur Yilmaz. 2020. "Influence of the Chitosan and Rosemary Extract on Fungal Biodegradation of Some Plasticized PLA-Based Materials" Polymers 12, no. 2: 469. https://doi.org/10.3390/polym12020469
APA StyleStoleru, E., Vasile, C., Oprică, L., & Yilmaz, O. (2020). Influence of the Chitosan and Rosemary Extract on Fungal Biodegradation of Some Plasticized PLA-Based Materials. Polymers, 12(2), 469. https://doi.org/10.3390/polym12020469