Characterization of the Structure and Transport Properties of Alginate/Chitosan Microparticle Membranes Utilized in the Pervaporative Dehydration of Ethanol
Abstract
:1. Introduction
2. Experimental
2.1. Membrane Preparation
2.2. Preparation of Modified Chitosan Particles
2.3. Characterization of Membrane Morphology
2.4. Pervaporation (PV) Experiments
2.5. Transport Model
3. Results and Discussion
3.1. Structure Analysis
3.2. Pervaporation Performance of Hybrid Alginate Membranes
3.3. Simulations of Random Walk
3.4. Comparison of Experimental Data with Characteristic Structure and Transport Model
4. Conclusion
Author Contributions
Funding
Conflicts of Interest
References
- Baker, R.W. Membrane Technology and Applications, 3rd ed.; Wiley&Sons: New York, NY, USA, 2012. [Google Scholar]
- Basile, A.; Figoli, A.; Khayet, M. Pervaporation, Vapour Permeation and Membrane Distillation, 1st ed.; Woodhead Publishing, Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Ong, Y.K.; Shi, G.M.; Le, N.L.; Tang, Y.P.; Zuo, J.; Nunes, S.P.; Chung, T.-S. Recent membrane development for pervaporation processes. Prog. Polym. Sci. 2016, 57, 1–31. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Chen, M.; Ma, Y.; Hu, C.; Zhang, Q.; Zhu, A.; Liu, Q. A hydrophobic pervaporation membrane with hierarchical microporosity for high-efficient dehydration of alcohols. Chem. Eng. Sci. 2019, 206, 489–498. [Google Scholar] [CrossRef]
- Jyothi, M.S.; Reddy, K.R.; Soontarapa, K.; Naveen, S.; Raghu, A.V.; Kulkarni, R.V.; Suhas, D.P.; Shetti, N.P.; Nadagouda, M.N.; Aminabhavi, T.M. Membranes for dehydration of alcohols via pervaporation. J. Environ. Manag. 2019, 242, 415–429. [Google Scholar] [CrossRef]
- Moriyama, N.; Nagasawa, H.; Kanezashi, M.; Tsuru, T. Pervaporation dehydration of aqueous solutions of various types of molecules via organosilica membranes: Effect of membrane pore sizes and molecular sizes. Sep. Purif. Technol. 2018, 207, 108–115. [Google Scholar] [CrossRef]
- Dudek, G.; Krasowska, M.; Turczyn, R.; Gnus, M.; Strzelewicz, A. Structure, morphology and separation efficiency of hybrid Alg/Fe3O4 membranes in pervaporative dehydration of ethanol. Sep. Purif. Technol. 2017, 182, 101–109. [Google Scholar] [CrossRef]
- Lipnizki, F.; Trägårdh, G. Modelling of pervaporation: Models to analyse and predict the mass transport in pervaporation. Sep. Purif. Rev. 2001, 30, 49–125. [Google Scholar] [CrossRef]
- Cojocaru, C.; Khayet, M.; Zakrzewska-Trznadel, G.; Jaworska, A. Modeling and multi-response optimization of pervaporation of organic aqueous solutions using desirability function approach. J. Hazard. Mater. 2009, 167, 52–63. [Google Scholar] [CrossRef] [PubMed]
- Hafrat, M.; Tgarguifa, A.; Abderafi, S. Modeling of Pervaporation Process for the Dehydration of Bioethanol. In Proceedings of the 2015 3rd International Renewable and Sustainable Energy Conference (IRSEC), Marrakech, Morocco, 10–13 December 2015. [Google Scholar]
- Shieh, J.; Huang, R.Y.M. A Pseudophase-Change Solution-Diffusion Model for Pervaporation. II. Binary Mixture Permeation. Sep. Sci. Technol. 1998, 33, 933–957. [Google Scholar] [CrossRef]
- Rautenbach, R.; Herion, C.; Meyer-Blumenroth, U. Engineering Aspects of Pervaporation: Calculation of Transport Resistances, Module Optimization and Plant Design in Pervaporation Membrane Separation Processes, Membrane Science and Technology Series, 1st ed.; Elsevier: New York, NY, USA, 1991; pp. 181–224. [Google Scholar]
- Klatt, S. Zum Einsatz von Pervaporation im Umfeld der Chemischen Industrie; Verlag Shaker: Aachen, Germany, 1993. [Google Scholar]
- Vier, J. Pervaporation azeotroper wäriger und rein organischer Stoffgemische—Verfahrensentwicklung und Integration. Ph.D. Thesis, University of Aachen, Aachen, Germany, 1995. [Google Scholar]
- Dudek, G.; Turczyn, R. New type of alginate/chitosan microparticle membranes for highly efficient pervaporative dehydration of ethanol. RSC Adv. 2018, 8, 39567–39578. [Google Scholar] [CrossRef] [Green Version]
- Medina, J.M.; Díaz, J.A.; Vignolo, C. Fractal Dimension of Sparkles in Automotive Metallic Coatings by Multispectral Imaging Measurements. ACS Appl. Mater. Interfaces 2014, 6, 11439–11447. [Google Scholar] [CrossRef]
- Mandelbrot, B.B. The Fractal Geometry of Nature; W. H. Freeman and Co.: New York, NY, USA, 1982. [Google Scholar]
- Grzywna, Z.J.; Krasowska, M. Generalized dimension (Dq) and f(α) for structure–morphology analysis. Inz. Mat. 2001, 4, 369–371. [Google Scholar]
- Grzywna, Z.J.; Krasowska, M.; Ostrowski, Ł.; Stolarczyk, J. Can generalized dimension (Dq) and f(α) be used in structure-morphology analysis? Acta Phys. Pol. B 2001, 32, 1561. [Google Scholar]
- Krasowska, M.; Grzywna, Z.J.; Mycielska, M.E.; Djamgoz, M.B.A. Fractal analysis and ionic dependence of endocytic membrane activity of human breast cancer cells. Eur. Biophys. J. 2009, 38, 1115–1125. [Google Scholar] [CrossRef] [PubMed]
- Krasowska, M.; Rybak, A.; Pawełek, K.; Dudek, G.; Strzelewicz, A.; Grzywna, Z.J. Structure morphology problems in the air separation by polymer membranes with magnetic particles. J. Membr. Sci. 2012, 415–416, 864–870. [Google Scholar] [CrossRef]
- Krasowska, M.; Strzelewicz, A.; Dudek, G.; Rybak, A.; Barszczewska-Rybarek, I.; Turczyn, R. Fractal Geometry Characteriazation of Fracture Profiles of Polymeric Materials. Acta Phys. Pol. B 2014, 45, 2011–2019. [Google Scholar] [CrossRef]
- Macek, W.M. Multifractality and intermittency in the solar wind, Nonlin. Process. Geophys. 2007, 14, 695–700. [Google Scholar] [CrossRef]
- Dudek, G.; Gnus, M.; Turczyn, R.; Strzelewicz, A.; Krasowska, M. Pervaporation with chitosan membranes containing iron oxide nanoparticles. Sep. Purif. Technol. 2014, 133, 8–15. [Google Scholar] [CrossRef]
- Wijmans, J.G.; Baker, R.W. The solution-diffusion model: A review. J. Membr. Sci. 1995, 107, 1–21. [Google Scholar] [CrossRef]
- Geankoplis, C.J. Transport Processes and Separation Process Principles. In Transport Processes and Separation Process Principles; Prentice-Hall International: Upper Saddle River, NJ, USA, 2014; p. 696. [Google Scholar]
- Dudek, G.; Borys, P. A Simple Methodology to Estimate the Diffusion Coefficient in Pervaporation-Based Purification Experiments. Polymers 2019, 11, 343. [Google Scholar] [CrossRef] [Green Version]
- Breg, H.C. Random Walks in Biology; Princeton University Press: New Jersey, NJ, USA, 1983. [Google Scholar]
- Zauderer, E. Partial Differential Equations of Applied Mathematics, 3rd ed.; Wiley: Hoboken, NJ, USA, 2006. [Google Scholar]
- Klafter, J.; Sokolov, I.M. First Steps in Random Walks: From Tools to Applications; Oxford Scholarship Online: Oxford, UK, 2011. [Google Scholar]
- Dudek, G.; Turczyn, R.; Strzelewicz, A.; Krasowska, M.; Rybak, A.; Grzywna, Z.J. Studies of separation of vapours and gases through composite membranes with ferroferric oxide magnetic nanoparticles. Sep. Purif. Technol. 2013, 109, 55–63. [Google Scholar] [CrossRef]
- Dudek, G.; Turczyn, R.; Gnus, M.; Konieczny, K. Pervaporative dehydration of ethanol/water mixture through hybrid alginate membranes with ferroferic oxide nanoparticles. Sep. Purif. Technol. 2018, 193, 398–407. [Google Scholar] [CrossRef]
- Dudek, G.; Krasowska, M.; Turczyn, R.; Strzelewicz, A.; Djurado, D.; Pouget, S. Clustering analysis for pervaporation performance assessment of alginate hybrid membranes in dehydration of ethanol. Chem. Eng. Res. Des. 2019, 144, 483–493. [Google Scholar] [CrossRef]
- Huang, R.Y.M.; Pal, R.; Moon, G.Y. Pervaporation Dehydration of Aqueous Ethanol and Isopropanol Mixtures through Alginate/Chitosan Two Ply Composite Membranes Supported by Poly (vinylidene fluoride) Porous Membrane. J. Memb Sci. 2000, 167, 275–289. [Google Scholar] [CrossRef]
- Dudek, G.; Turczyn, R.; Konieczny, K. Robust poly (vinyl alcohol) membranes containing chitosan/chitosan derivatives microparticles for pervaporative dehydration of ethanol. Sep. Purif. Technol. 2020, 234, 116094. [Google Scholar] [CrossRef]
- Jayakumar, R.; Nagahama, H.; Furuike, T.; Tamura, H. Synthesis of phosphorylated chitosan by novel method and its characterization. Int. J. Biol. Macromol. 2008, 42, 335–339. [Google Scholar] [CrossRef]
- Crank, J. The Mathematics of Diffusion; Oxford University Press: Oxford, UK, 1975. [Google Scholar]
- Gilliland, E.R. Diffusion Coefficients in Gaseous Systems. Ind. Eng. Chem. 1934, 26, 681–685. [Google Scholar] [CrossRef]
Chitosan Particles Filling Alginate Membranes | The Observed Total Fraction of Void Space (Porosity) (%) | The Average Size of Void Domains (Pixels) | Degree of Self-Similarity Δα | |
---|---|---|---|---|
Neat (CS) | 57 | 1825 | 1.93 ± 0.05 | 0.22 |
phosphorylated (CS-P) | 55 | 1148 | 1.96 ± 0.05 | 0.22 |
glutaraldehyde crosslinked (CS-GA) | 64 | 4197 | 1.89 ± 0.05 | 0.22 |
glycidol-modified (CS-G) | 54 | 5717 | 1.94 ± 0.05 | 0.22 |
Particles Parameters | CS | CS-P | CS-GA | CS-G |
---|---|---|---|---|
First Passage Time ratios | 4.4 | 5.8 | 11.6 | 10.8 |
Effective diffusion coefficient ratios | 8.4 | 11.0 | 22.0 | 20.5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dudek, G.; Borys, P.; Strzelewicz, A.; Krasowska, M. Characterization of the Structure and Transport Properties of Alginate/Chitosan Microparticle Membranes Utilized in the Pervaporative Dehydration of Ethanol. Polymers 2020, 12, 411. https://doi.org/10.3390/polym12020411
Dudek G, Borys P, Strzelewicz A, Krasowska M. Characterization of the Structure and Transport Properties of Alginate/Chitosan Microparticle Membranes Utilized in the Pervaporative Dehydration of Ethanol. Polymers. 2020; 12(2):411. https://doi.org/10.3390/polym12020411
Chicago/Turabian StyleDudek, Gabriela, Przemysław Borys, Anna Strzelewicz, and Monika Krasowska. 2020. "Characterization of the Structure and Transport Properties of Alginate/Chitosan Microparticle Membranes Utilized in the Pervaporative Dehydration of Ethanol" Polymers 12, no. 2: 411. https://doi.org/10.3390/polym12020411
APA StyleDudek, G., Borys, P., Strzelewicz, A., & Krasowska, M. (2020). Characterization of the Structure and Transport Properties of Alginate/Chitosan Microparticle Membranes Utilized in the Pervaporative Dehydration of Ethanol. Polymers, 12(2), 411. https://doi.org/10.3390/polym12020411