Coating Strategy for Surface Modification of Stainless Steel Wire to Improve Interfacial Adhesion of Medical Interventional Catheters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. TPU for Surface Modification of Stainless Steel Wire
2.3. Preparation of Braid-Reinforced Composite Hollow Fiber Tube
2.4. Characterization
3. Results
3.1. Spectroscopy Analysis
3.2. Coating Thickness Calculations
3.3. Interlaminar Shear Strength Analysis
3.4. Interfacial Adhesion Analysis
3.5. Torsion Control Performance
3.6. Tensile Properties of Braid-Reinforced Composite Hollow Fiber Tube
3.7. Morphology of Braid-Reinforced Composite Hollow Fiber Tube
3.8. Flexural Strength of Braid-Reinforced Composite Hollow Fiber Tube
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Boulos, A.S.; Levy, E.I.; Bendok, B.R.; Kim, S.H.; Qureshi, A.I.; Guterman, L.R.; Hopkins, N. Evolution of neuroendovascular intervention: A review of advancement in device technology. Neurosurgery 2004, 54, 438–452. [Google Scholar] [CrossRef]
- Linfante, I.; Wakhloo, A.K. Brain aneurysms and arteriovenous malformations-Advancements and emerging treatments in endovascular embolization. Stroke 2007, 38, 1411–1417. [Google Scholar] [CrossRef] [Green Version]
- Martin, R.W.; Watkins, D.W. An ultrasonic catheter for intravascular measurement of blood flow: Technical details. IEEE Trans. Sonics Ultrason. 1980, 27, 277–286. [Google Scholar] [CrossRef]
- Coffey, A.B.; Brazier, A.; Tierney, M.; Gately, A.G.; O’Bradaigh, C.M. Development of thin-walled fibre-reinforced structures for medical applications. Compos. Part A 2003, 34, 535–542. [Google Scholar] [CrossRef]
- Yao, W.; Schaeffter, T.; Seneviratne, L.; Althoefer, K. Developing a magnetic resonance-compatible catheter for cardiac catheterization. J. Med. Devices 2012, 6, 041002–041008. [Google Scholar] [CrossRef]
- Bell, J.A.; Saikus, C.E.; Ratnayaka, K.; Wu, V.; Sonmez, M.; Faranesh, A.Z.; Colyer, J.H.; Lederman, R.J.; Kocaturk, O. A deflectable guiding catheter for real-time MRI-guided interventions. J. Magn. Reson. Imaging 2012, 35, 908–915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dekeyser, W.; Lefever, I. Steel reinforced thermoplastics. Mater. Sci. Forum 2003, 2045, 426–432. [Google Scholar] [CrossRef]
- Pazhanivel, K.; Bhaskar, G.B.; Elayaperumal, A.; Anandan, P.; Arunachalam, S. Influence of stainless steel wire reinforcement on the impact resistance of GFRP composite laminates. Arab. J. Sci. Eng. 2015, 40, 1111–1122. [Google Scholar] [CrossRef]
- Sokolova, O.A.; Xarradò, A.; Palkowski, H. Metal–polymer–metal sandwiches with local metal reinforcements: A study on formability by deep drawing and bending. Compos. Struct. 2011, 94, 1–7. [Google Scholar] [CrossRef]
- Faes, J.C.; Rezaei, A.; Van, W.; Paepegem, W.V.; Degrieck, J. Influence of matrix toughness and interfacial strength on the toughness of epoxy composites with ductile steel fabric reinforcement. Compos. Interfaces 2015, 22, 779–793. [Google Scholar] [CrossRef] [Green Version]
- Baillie, C.; Emanuelsson, J.; Marton, F. Building knowledge about the interface. Compos. Part A 2001, 32, 305–312. [Google Scholar] [CrossRef]
- Herrera-Franco, P.J.; Valadez-González, A. A study of the mechanical properties of short natural-fiber reinforced composites. Compos. Part B 2005, 36, 597–608. [Google Scholar] [CrossRef]
- George, J.; Sreekala, M.S.; Thomas, S. A Review on interface modification and characterization of natural fiber reinforced plastic composites. Polym. Eng. Sci. 2001, 41, 1471–1485. [Google Scholar] [CrossRef]
- Day, R.J.; Hewson, K.D.; Lovell, P.A. Surface modification and its effect on the interfacial properties of model aramid-fiber/epoxy composites. Compos. Sci. Technol. 2002, 62, 153–166. [Google Scholar] [CrossRef]
- Park, S.J.; Seo, M.K.; Ma, T.J.; Lee, D.R. Effect of chemical treatment of Kevlar fibers on mechanical interfacial properties of composites. J. Colloid Interface Sci. 2002, 252, 249–255. [Google Scholar] [CrossRef]
- Fan, G.; Zhao, J.; Zhang, Y.; Guo, Z. Grafting modification of Kevlar fiber using horseradish peroxidase. Polym. Bull. 2006, 56, 507–515. [Google Scholar] [CrossRef]
- Gu, H. Tensile behaviours of quartz, aramid and glass filaments after NaCl treatment. Mater. Des. 2009, 30, 867–870. [Google Scholar] [CrossRef]
- Shirazi, M.; Rooij, M.B.; Talma, A.G.; Noordermeer, K.W.M. Adhesion of RFL-coating aramid fibers to elastomers: The role of elastomer-latex compatibility. J. Adhes. Sci. Technol. 2013, 27, 1886–1898. [Google Scholar] [CrossRef]
- Zhou, L.F.; Yuan, L.; Guan, Q.B.; Gu, A.J.; Liang, G.Z. Building unique surface structure on aramid fibers through a green layer-by-layer self-assembly technique to develop new high performance fibers with greatly improved surface activity, thermal resistance, mechanical properties and UV resistance. Appl. Surf. Sci. 2017, 411, 34–45. [Google Scholar] [CrossRef]
- Liu, L.; Xiao, L.; Zhang, X.; Li, M.; Chang, Y.; Shang, L.; Ao, Y.H. Improvement of the thermal conductivity and friction performance of poly (ether ether ketone)/carbon fiber laminates by addition of graphene. RSC Adv. 2015, 5, 557853–557859. [Google Scholar] [CrossRef]
- Li, Z.M.; Liu, B.H.; Kong, H.J.; Yu, M.H.; Qin, M.L.; Teng, C.Q. Layer-by-layer self-assembly of strategy for surface modification of aramid fibers to enhance interfacial adhesion to epoxy resin. Polymers 2018, 10, 820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassan, E.A.M.; Ge, D.T.; Yang, L.L.; Zhou, J.F.; Liu, M.X.; Yu, M.H.; Zhu, S. Highly boosting the interlaminar shear strength of CF/PEEK composites via introduction of PEEK onto activated CF. Compos. Part A 2018, 112, 155–160. [Google Scholar] [CrossRef]
- Hassan, E.A.M.; Ge, D.T.; Zhu, S.; Yang, L.L.; Zhou, J.F.; Yu, M.H. Enhancing CF/PEEK composites by CF decoration with polyimide and loosely-packed CNT arrays. Compos. Part A 2019, 127, 105613–105619. [Google Scholar] [CrossRef]
- Thomason, J.L.; Adzima, L.J. Sizing up the interphase: An insider’s guide to the science of sizing. Compos. Part A 2001, 32, 313–321. [Google Scholar] [CrossRef]
- Xu, H.B.; Zhang, X.Q.; Liu, D.; Yan, C.; Chen, X.; Hui, D.; Zhu, Y.D. Cyclomatrix-type polyphosphazene coating: Improving interfacial property of carbon fiber/epoxy composites and preserving fiber tensile Strength. Compos. Part B 2016, 93, 244–251. [Google Scholar] [CrossRef]
- Karger-Kocsis, J.; Mahmood, H.; Pegoretti, A. Recent advances in fiber/matrix interphase engineering for polymer composites. Prog. Mater. Sci. 2015, 73, 1–43. [Google Scholar] [CrossRef]
V1 (m/min), η1 = 250 mpa·s | h1 (μm) | V2 (m/min), η2 = 350 mpa·s | h2 (μm) |
---|---|---|---|
1.0 | 4.70 | 1.0 | 5.30 |
1.5 | 4.80 | 1.5 | 5.30 |
2.0 | 4.84 | 2.0 | 5.50 |
2.5 | 5.20 | 2.5 | 5.60 |
3.0 | 5.50 | 3.0 | 6.20 |
3.5 | 7.10 | 3.5 | 7.70 |
4.0 | 7.40 | 4.0 | 8.20 |
4.5 | 7.40 | 4.5 | 8.20 |
5.0 | 7.40 | 5.0 | 8.20 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Kong, H.; Yu, M.; Zhu, S.; Qin, M. Coating Strategy for Surface Modification of Stainless Steel Wire to Improve Interfacial Adhesion of Medical Interventional Catheters. Polymers 2020, 12, 381. https://doi.org/10.3390/polym12020381
Li Z, Kong H, Yu M, Zhu S, Qin M. Coating Strategy for Surface Modification of Stainless Steel Wire to Improve Interfacial Adhesion of Medical Interventional Catheters. Polymers. 2020; 12(2):381. https://doi.org/10.3390/polym12020381
Chicago/Turabian StyleLi, Zhaomin, Haijuan Kong, Muhuo Yu, Shu Zhu, and Minglin Qin. 2020. "Coating Strategy for Surface Modification of Stainless Steel Wire to Improve Interfacial Adhesion of Medical Interventional Catheters" Polymers 12, no. 2: 381. https://doi.org/10.3390/polym12020381
APA StyleLi, Z., Kong, H., Yu, M., Zhu, S., & Qin, M. (2020). Coating Strategy for Surface Modification of Stainless Steel Wire to Improve Interfacial Adhesion of Medical Interventional Catheters. Polymers, 12(2), 381. https://doi.org/10.3390/polym12020381