High-Capacity, Fast-Response, and Photocapacitor-Based Terpolymer Phosphor Composite
Abstract
1. Introduction
2. Materials and Methods
2.1. Polymer Fabrication
2.2. Experimental Setup and Characterization Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Polino, G.; Lubrano, C.; Ciccone, G.; Santoro, F. Photogenerated electrical fields for biomedical applications. Front. Bioeng. Biotechnol. 2018, 6, 167. [Google Scholar] [CrossRef]
- Inal, S.; Rivnay, J.; Suiu, A.-O.; Malliaras, G.; McCulloch, I. Conjugated polymers in bioelectronics. Acc. Chem. Res. 2018, 51, 1368–1376. [Google Scholar] [CrossRef]
- Della Schiava, N.; Thetpraphi, K.; Le, M.-Q.; Lermusiaux, P.; Millon, A.; Capsal, J.-F.; Cottinet, P.-J. Enhanced figures of merit for a high-performing actuator in electrostrictive materials. Polymers 2018, 10, 263. [Google Scholar] [CrossRef] [PubMed]
- Della Schiava, N.; Le, M.-Q.; Galineau, J.; Domingues Dos Santos, F.; Cottinet, P.-J.; Capsal, J.-F. Influence of plasticizers on the electromechanical behavior of a P(VDF-TrFE-CTFE) Terpolymer: Toward a high performance of electrostrictive blends. J. Polym. Sci. Part B Polym. Phys. 2017, 55, 355–369. [Google Scholar] [CrossRef]
- Ferlauto, L.; Leccardi, M.J.I.A.; Chenais, N.A.L.; Gilliéron, S.C.A.; Vagni, P.; Bevilacqua, M.; Wolfensberger, T.J.; Sivula, K.; Ghezzi, D. Design and validation of a foldable and photovoltaic wide-field epiretinal prosthesis. Nat. Commun. 2018, 9, 992. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Pan, S.; Feng, P.-J.; Bian, H.; Han, X.; Liu, J.-H.; Guo, X.; Chen, D.; Ge, H.; Shen, Q.-D. Bioinspired ferroelectric polymer arrays as photodetectors with signal transmissible to neuron cells. Adv. Mater. 2016, 28, 10684–10691. [Google Scholar] [CrossRef]
- Di Maria, F.; Lodola, F.; Zucchetti, E.; Benfenati, F.; Lanzani, G. The evolution of artificial light actuators in living systems: From planar to nanostructured interfaces. Chem. Soc. Rev. 2018, 47, 4757–4780. [Google Scholar] [CrossRef]
- Cohn, A.-P.; Erwin, W.-R.; Share, K.; Oakes, L.; Westover, A.-S.; Carter, R.-E.; Bardhan, R.; Pint, C.-L. All silicon electrode photocapacitor for integrated energy storage and conversion. Nano Lett. 2015, 15, 2727–2731. [Google Scholar] [CrossRef]
- Wu, W.; Wang, X.; Han, X.; Yang, Z.; Gao, G.; Zhang, Y.; Hu, J.; Tan, Y.; Pan, A.; Pan, C. Flexible photodetector arrays based on patterned CH3NH3PbI3−xClx perovskite film for real-time photosensing and imaging. Adv. Mater. 2019, 31, 1805913. [Google Scholar] [CrossRef]
- Sekirnjak, C.; Hottowy, P.; Sher, A.; Dabrowski, W.; Litke, A.M.; Chichilnisky, E.J. Electrical stimulation of mammalian retinal ganglion cells with multielectrode arrays. J. Neurophysiol. 2006, 95, 3311. [Google Scholar] [CrossRef]
- Bareket, L.; Waiskopf, N.; Rand, D.; Lubin, G.; David-Pur, M.; Ben-Dov, J.; Roy, S.; Eleftheriou, C.; Sernagor, E.; Cheshnovsky, O.; et al. Semiconductor nanorod—Carbon nanotube biomimetic films for wire-free photostimulation of blind retinas. Nano Lett. 2014, 14, 6685–6692. [Google Scholar] [CrossRef] [PubMed]
- Rand, D.; Jakešová, M.; Lubin, G.; Vébraité, I.; David-Pur, M.; Derek, V.; Cramer, T.; Serdar Sariciftci, N.; Hanein, Y.; Glowacki, E.-D. Direct electrical neurostimulation with organic pigment photocapacitors. Adv. Mater. 2018, 30, 1707292. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.Y.; Lorach, H.; Huie, P.; Palanker, D. Implantation of modular photovoltaic subretinal prosthesis. Ophthalmic Surg. Lasers Imaging Retina 2016, 47, 171–174. [Google Scholar] [CrossRef] [PubMed]
- Ghezzi, D.; Antognazza, M.-R.; Maschio, M.-D.; Lanzarini, E.; Benfenati, F.; Lanzani, G. A hybrid bioorganic interface for neuronal photoactivation. Nat. Commun. 2011, 2, 166. [Google Scholar] [CrossRef]
- Antognazza, M.R.; Di Paolo, M.; Ghezzi, D.; Mete, M.; Di Marco, S.; Maya-Vetencourt, J.F.; Maccarone, R.; Desii, A.; Di Fonzo, F.; Bramini, M.; et al. Characterization of a polymer-based, fully organic prosthesis for implantation into the subretinal space of the rat. Adv. Healthc. Mater. 2016, 5, 2271–2282. [Google Scholar] [CrossRef]
- Jeong, G.-J.; Oh, J.Y.; Kim, Y.-J.; Bhang, S.H.; Jang, H.-K.; Han, J.; Yoon, J.-K.; Kwon, S.-M.; Lee, T.I.; Kim, B.-S. Therapeutic angiogenesis via solar cell-facilitated electrical stimulation. ACS Appl. Mater. Interfaces 2017, 9, 38344–38355. [Google Scholar] [CrossRef]
- Thukral, A.; Ershad, F.; Enan, N.; Rao, Z.; Yu, C. Soft ultrathin silicon electronics for soft neural interfaces: A review of recent advances of soft neural interfaces based on ultrathin silicon. IEEE Nanotechnol. Mag. 2018, 12, 21–34. [Google Scholar] [CrossRef]
- Benfenati, F.; Lanzani, G. New technologies for developing second generation retinal. Lab Anim. 2018, 47, 71–75. [Google Scholar] [CrossRef]
- Capsal, J.-F.; Galineau, J.; Le, M.-Q.; Domingues Dos Santos, F.; Cottinet, P.-J. Enhanced electrostriction based on plasticized relaxor ferroelectric P(VDF-TrFE-CFE/CTFE) blends. J. Polym. Sci. Part B Polym. Phys. 2015, 53, 1368–1379. [Google Scholar] [CrossRef]
- Krishnan, S.; Van der Walt, H.; Venkatesh, V.; Sundaresan, V.-B. Dynamic characterization of elasticomechanoluminescence towards structural health monitoring. J. Intell. Mater. Syst. Struct. 2017, 28. [Google Scholar] [CrossRef]
- Jeong, J.-W.; Shin, G.; Park, S.-I.; Yu, K.-J.; Xu, L.; Rogers, J.-A. Soft materials in neuroengineering for hard problems in neuroscience. Neuron 2015, 86, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Zhou, W.; Zhang, C.; Li, Q.; Sha, R.; Chen, X.; Chu, B.; Shen, Q.-D. Composite of P(VDF-CTFE) and aromatic polythiourea for capacitors with high-capacity, high-efficiency, and fast response. J. Polym. Sci. Part B Polym. Phys. 2018, 56, 193–199. [Google Scholar] [CrossRef]
- Liu, Q.; Richard, C.; Capsal, J.-F. New route toward high-energy-density nanocomposites based on chain-end functionalized ferroelectric polymers. Chem. Mater. 2017, 91, 46–60. [Google Scholar] [CrossRef]
- Pedroli, F.; Marrani, A.; Le, M.-Q.; Froidefond, C.; Cottinet, P.-J.; Capsal, J.-F. Processing optimization: A way to improve the ionic conductivity and dielectric loss of electroactive polymers. J. Polym. Sci. Part B Polym. Phys. 2018, 56, 1164–1173. [Google Scholar] [CrossRef]
- Available online: https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=2853 (accessed on 19 Junuary 2019).
- Mannsfeld, S.C.B.; Tee, B.C.K.; Stoltenberg, R.M.; Chen, C.V.H.H.; Barman, S.; Muir, B.V.O.; Sokolov, A.N.; Reese, C.; Bao, Z. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 2010, 9, 859–864. [Google Scholar] [CrossRef] [PubMed]
- Rohringer, S.; Holnthoner, W.; Chaudary, S.; Slezak, P.; Priglinger, E.; Strassl, M.; Pill, K.; Mühleder, S.; Redl, H.; Dungel, P. The impact of wavelengths of LED light-therapy on endothelial cells. Sci. Rep. 2017, 7, 10700. [Google Scholar] [CrossRef]
- Abdullaeva, O.-S.; Schulz, M.; Balzer, F.; Parisi, J.; Lützen, A.; Dedek, K.; Schiek, M. Photoelectrical stimulation of neuronal cells by an organic semiconductor—Electrolyte interface. Langmuir 2016, 32, 8533–8542. [Google Scholar] [CrossRef] [PubMed]
- Miyasaka, T.; Murakami, T.-N. The photocapacitor: An efficient self-charging capacitor for direct storage of solar energy. Appl. Phys. Lett. 2004, 85, 3932. [Google Scholar] [CrossRef]
- Hu, L.; Liu, X.; Dalgleish, S.; Matsushita, M.M.; Yoshikawa, H.; Awaga, K. Organic optoelectronic interfaces with anomalous transient photocurrent. J. Mater. Chem. C 2015, 3, 5122–5135. [Google Scholar] [CrossRef]
- Gautam, V.; Bag, M.; Narayan, K. Dynamics of bulk polymer heterostructure/electrolyte devices. J. Phys. Chem. Lett. 2010, 1, 3277–3282. [Google Scholar] [CrossRef]
- Reissig, L.; Mori, K.; Treadwell, R.; Dalgleish, S.; Awaga, K. Factors affecting the polarity and magnitude of photoresponse of transient photodetectors. Chem. Phys. 2016, 18, 68216830. [Google Scholar] [CrossRef] [PubMed]
Reference | LIU470A | LIU525B | LIU630A |
---|---|---|---|
LED’s Color | Blue | Green | Red |
Wavelength (nm) | 470 | 525 | 590 |
Intensity at a distance of 100 mm (mW/cm2) | 4.0 | 1.9 | 2.4 |
Total output power (mW) | 253 | 111 | 208 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mokni, M.; Pedroli, F.; D’Ambrogio, G.; Le, M.-Q.; Cottinet, P.-J.; Capsal, J.-F. High-Capacity, Fast-Response, and Photocapacitor-Based Terpolymer Phosphor Composite. Polymers 2020, 12, 349. https://doi.org/10.3390/polym12020349
Mokni M, Pedroli F, D’Ambrogio G, Le M-Q, Cottinet P-J, Capsal J-F. High-Capacity, Fast-Response, and Photocapacitor-Based Terpolymer Phosphor Composite. Polymers. 2020; 12(2):349. https://doi.org/10.3390/polym12020349
Chicago/Turabian StyleMokni, Marwa, Francesco Pedroli, Giulia D’Ambrogio, Minh-Quyen Le, Pierre-Jean Cottinet, and Jean-Fabien Capsal. 2020. "High-Capacity, Fast-Response, and Photocapacitor-Based Terpolymer Phosphor Composite" Polymers 12, no. 2: 349. https://doi.org/10.3390/polym12020349
APA StyleMokni, M., Pedroli, F., D’Ambrogio, G., Le, M.-Q., Cottinet, P.-J., & Capsal, J.-F. (2020). High-Capacity, Fast-Response, and Photocapacitor-Based Terpolymer Phosphor Composite. Polymers, 12(2), 349. https://doi.org/10.3390/polym12020349