Innovation of Critical Bubble Electrospinning and Its Mechanism
1. Introduction
2. Experimental and Discussion
2.1. Experimental Setup
2.2. Materials
2.3. Preparation of Different Polymer Solutions and Nanofibers
2.4. The Theoretical Model of the Critical Bubble
2.5. Instability of the Bubble Surface Under the Critical Bubble Electrospinning Process
2.6. Continuous Spinning Process
2.7. Nanofibers Fabricated by Critical Bubble Electrospinning
3. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Lu, B.; Wang, Y.; Liu, Y.; Duan, H.; Zhou, J.; Zhang, Z.; Wang, Y.; Li, X.; Wang, W.; Lan, W.; et al. Superhigh-throughput needleless electrospinning using a rotary cone as spinneret. Small 2010, 6, 1612–1616. [Google Scholar] [CrossRef] [PubMed]
- Yarin, A.L.; Zussman, E. Upward needleless electrospinning of multiple nanofibers. Polymer 2004, 45, 2977–2980. [Google Scholar] [CrossRef]
- Li, X.X.; Li, Y.Y.; Li, Y.; He, J.H. Gecko-like adhesion in the electrospinning process. Results Phys. 2019. [Google Scholar] [CrossRef]
- Zhou, C.J.; Li, Y.; Yao, S.W.; He, J.H. Silkworm-based silk fibers by electrospinning. Results Phys. 2019, 15, 102646. [Google Scholar] [CrossRef]
- Yu, D.N.; Tian, D.; Zhou, C.J.; He, J.H. Wetting and supercontraction properties of spider-based nanofibers. Therm. Sci. 2019, 23, 2189–2193. [Google Scholar] [CrossRef]
- Tian, D.; Zhou, C.J.; He, J.H. Sea-silk based nanofibers and their diameter prediction. Therm. Sci. 2019, 23, 2253–2256. [Google Scholar] [CrossRef]
- Cheng, T.T.; Xu, L.; Wang, M.D. Effect of surface active agent on bubble-electrospun polyacrylonitrile nanofibers. Therm. Sci. 2019, 23, 2481–2487. [Google Scholar] [CrossRef] [Green Version]
- Li, X.X.; Qiang, J.; Wan, Y.Q.; Wang, H.B.; Gao, W.D. The effect of sonic vibration on electrospun fiber mats. J. Low Freq. Noise V. A. 2019, 38, 1246–1251. [Google Scholar] [CrossRef]
- Zhao, J.H.; Li, X.X.; Liu, Z. Needle’s vibration in needle-disk electrospinning process: Theoretical model and experimental verification. J. Low Freq. Noise V. A. 2019, 38, 1338–1344. [Google Scholar] [CrossRef] [Green Version]
- Tian, D.; He, J.H. Macromolecular electrospinning: Basic concept & preliminary experiment. Results Phys. 2019, 11, 740–742. [Google Scholar]
- He, J.H. A simple approach to one-dimensional convection-diffusion equation and its fractional modification for E reaction arising in rotating disk electrodes. Electroanal. Chem. 2019, 854, 113565. [Google Scholar] [CrossRef]
- Liu, Y.Q.; He, C.H.; Li, X.X.; He, J.H. Fabrication of beltlike fibers by electrospinning. Polymers 2018, 10, 1087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, F.E.; Lalia, B.S.; Hashaikeh, R. A review on electrospinning for membrane fabrication: Challenges and applications. Desalination 2015, 356, 15–30. [Google Scholar] [CrossRef]
- Yang, Y.; Jia, Z.; Li, Q.; Hou, L.; Liu, J.N.; Wang, L.; Guan, Z.; Zahn, M. A shield ring enhanced equilateral hexagon distributed multi-needle electrospinning spinneret. IEEE Trans. Dielectr. Electr. Insul. 2010, 17, 1592–1601. [Google Scholar] [CrossRef]
- Lukas, D.; Sarkar, A.; Pokorny, P. Self-organization of jets in electrospinning from free liquid surface: A generalized approach. J. Appl. Phys. 2008, 103, 084309. [Google Scholar] [CrossRef]
- Jirsak, O.; Sanetrnik, F.; Lukas, D.; Kotek, V.; Martinova, L.; Chaloupek, J. A Method of Nanofibres Production from a Polymer Solution Using Electrostatic Spinning and a Device for Carrying out the Method. US Patent No. WO2005024101A1, 17 March 2005. [Google Scholar]
- Niu, H.; Lin, T.; Wang, X. Needleless electrospinning. I. A comparison of cylinder and disk nozzles. J. Appl. Polym. Sci. 2009, 114, 3524–3530. [Google Scholar] [CrossRef]
- Niu, H.; Lin, T. Fiber generators in needleless electrospinning. J. Nanometer. 2012, 2012, 727950. [Google Scholar] [CrossRef]
- Liu, Y.; He, J.H.; Xu, L.; Yu, J.Y. The principle of bubble electrospinning and its experimental verification. J. Polym. Eng. 2008, 28, 55–66. [Google Scholar] [CrossRef]
- He, J.H.; Liu, Y. Control of bubble size and bubble number in bubble electrospinning. Comput. Math. Appl. 2012, 64, 1033–1035. [Google Scholar] [CrossRef] [Green Version]
- He, J.H. Generalized variational principles for buckling analysis of circular cylinders. Acta Mech. 2019. [Google Scholar] [CrossRef]
- He, J.H. A fractal variational theory for one-dimensional compressible flow in a microgravity space. Fractals 2019. [Google Scholar] [CrossRef]
- He, J.H. Variational principle for the generalized KdV-burgers equation with fractal derivatives for shallow water waves. J. Appl. Comput. Mech. 2020, 6. [Google Scholar] [CrossRef]
- He, J.H. A modified Li-He’s variational principle for plasma. Int. J. Numer. Methods Heat Fluid Flow 2019. [Google Scholar] [CrossRef]
- He, J.H. Lagrange crisis and generalized variational principle for 3D unsteady flow. Int. J. Numer. Methods Heat Fluid Flow 2019. [Google Scholar] [CrossRef]
- He, J.H.; Sun, C. A variational principle for a thin film equation. J. Math. Chem. 2019, 57, 2075–2081. [Google Scholar] [CrossRef]
- Ren, Z.F.; He, J.H. Single polymeric bubble for the preparation of multiple micro/nano fibers. J. Appl. Polym. Sci. 2011, 119, 1161–1165. [Google Scholar] [CrossRef]
- Kulkarn, I.A.; Josh, I.J.B. Bubble formation and bubble rise velocity in gad-liquid systems: A review. Ind. Eng. Chem. Res. 2005, 44, 5873–5931. [Google Scholar] [CrossRef]
- Wang, X.; Niu, H.T.; Lin, T.; Wang, X.G. Needleless electrospinning of nanofibers with a conical wire coil. Polym. Eng. Sci. 2009, 49, 1582–1586. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Shao, Z.B.; Xu, L.; Wang, M.D. High throughput preparation of aligned nanofibers using an improved bubble-electrospinning. Polymers 2017, 9, 658. [Google Scholar] [CrossRef] [Green Version]
- Mirjalili, M.; Zohoori, S. Review for application of electrospinning and electrospun nanofibers technology in textile industry. J. Nanostruct. Chem. 2016, 6, 207–213. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wan, Y.; Zhang, Y.; He, J.H.; Wang, P. Bubbfil electrospinning of PA66/Cu nanofibers. Therm. Sci. 2016, 20, 993–998. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhu, J.D.; Shi, R.W.; Dirican, M.; Zhu, P.; Yan, C.Y.; Jia, H.; Zang, J.; He, J.H.; Zhang, X.W. Ultrafine and polar ZrO2-inlaid porous nitrogen-doped carbon nanofiber as efficient polysulfide absorbent for high-performance lithium-sulfur batteries with long lifespan. Chem. Eng. J. 2018, 349, 376–387. [Google Scholar] [CrossRef]
- Li, Y.; He, J.H. Fabrication and characterization of ZrO2 nanofibers by critical bubble electrospinning for high-temperature-resistant adsorption and separation. Adsorpt. Sci. Technol. 2019, 37. [Google Scholar] [CrossRef] [Green Version]
- De Gennes, P.G.; Brochard-Wyart, F.; Quere, D. Capillary and Wetting Phenomena: Drops, Bubbles, Pearls, Waves; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Hilton, J.E.; van der Net, A. Dynamics of Charged Hemispherical Soap Bubbles. EPL 2009, 2, 24003. [Google Scholar] [CrossRef]
- Brennen, C.E. Cavitation and Bubble Dynamics; Oxford University Press: Oxford, UK, 1995. [Google Scholar]
- He, J.H.; Liu, Y.; Xu, L. BioMimic fabrication of electrospun nanofibers with high-throughput. Chaos Solitons Fractals 2008, 37, 643–651. [Google Scholar]
- Bird, J.C.; De Ruiter, R.; Courbin., L.; Stone, H.A. Daughter bubble cascades produced by folding of ruptured thin films. Nature 2010, 465, 759–762. [Google Scholar] [CrossRef]
- Lohse, D.; Schmitz, B.; Versluis, M. Snapping shrimp make flashing bubbles. Nature 2001, 413, 477–478. [Google Scholar] [CrossRef]
- Yang, R.R.; He, J.H.; Xu, L.; Yu, J.Y. Effect of solution concentration on diameter and morphology of PVA nanofibres in bubble electrospinning process. Mater. Sci. Technol. 2010, 26, 1313–1316. [Google Scholar] [CrossRef]
- Gule, N.P.; De Kwaadsteniet, M.; Cloete, T.E.; Klumperman, B. Furanone-containing poly(vinyl alcohol) nanofibers for cell-adhesion inhibition. Water Res. 2013, 47, 1049–1059. [Google Scholar] [CrossRef]
- Li, Y.; Chen, R.X.; He, J.H. Comparison between electrospun and bubbfil-spun polyether sulfone fibers. Matéria 2014, 9, 363–369. [Google Scholar]
- Sidaravicius, J.; Ringaudas, R.; Lozovski, T.; Heiskanen, I.; Backfolk, K. The influence of solution parameters on the electrospinning intensity from foamed surface. J. Appl. Polym. Sci. 2015, 132, 42034–42041. [Google Scholar] [CrossRef]
- Ren, X.L.; Ying, P.Z.; Yang, Z.B.; Shang, M.H.; Hou, H.L.; Gao, F.M. Foaming-assisted electrospinning of large-pore mesoporous ZnO nanofibers with tailored structures and enhanced photocatalytic activity. RSC Adv. 2015, 5, 16361–16367. [Google Scholar] [CrossRef]
- Li, Y.; He, J.H. Comparative and verified studies of zirconium nanocomposite nanofibres by bubble spinning. Micro Nano Lett. 2018, 13, 228–231. [Google Scholar] [CrossRef]
- Jiang, G.J.; Zhang, S.; Wang, Y.T.; Qin, X.H. An improved free surface electrospinning with micro-bubble solution system for massive production of nanofibers. Mater. Lett. 2015, 144, 22–25. [Google Scholar] [CrossRef]
- Fang, Y.; Liu, F.J.; Xu, L.; Wang, P.; He, J.H. Preparation of PLGA/MWCNT composite nanofibers by airflow bubble-spinning and their characterization. Polymers 2018, 10, 481–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, C.H.; Shen, Y.; Ji, F.Y.; He, J.H. Taylor series solution for fractal Bratu-type equation arising in electrospinning process. Fractals 2019. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Dong, A.; He, J. Innovation of Critical Bubble Electrospinning and Its Mechanism. Polymers 2020, 12, 304. https://doi.org/10.3390/polym12020304
Li Y, Dong A, He J. Innovation of Critical Bubble Electrospinning and Its Mechanism. Polymers. 2020; 12(2):304. https://doi.org/10.3390/polym12020304
Chicago/Turabian StyleLi, Ya, Aixue Dong, and Jihuan He. 2020. "Innovation of Critical Bubble Electrospinning and Its Mechanism" Polymers 12, no. 2: 304. https://doi.org/10.3390/polym12020304
APA StyleLi, Y., Dong, A., & He, J. (2020). Innovation of Critical Bubble Electrospinning and Its Mechanism. Polymers, 12(2), 304. https://doi.org/10.3390/polym12020304