Effect of Melt-Compounding Protocol on Self-Aggregation and Percolation in a Ternary Composite
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Sample Preparation
2.3. Characterization
3. Results and Discussion
3.1. PCL-Induced CB Self-Aggregation
3.2. Mixing Effect on PCL-Induced CB Self-Aggregation
3.3. Dielectric and Rheological Characterization of the Ternary Composites
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lee, S.M.; Byeon, H.J.; Lee, J.H.; Baek, D.H.; Lee, K.H.; Hong, J.S.; Lee, S.H. Self-adhesive epidermal carbon nanotube electronics for tether-free long-term continuous recording of biosignals. Sci. Rep. 2014, 4, 6074. [Google Scholar] [CrossRef] [PubMed]
- Kwon, O.M.; Watanabe, H.; Ahn, K.H.; Lee, S.J. Interplay between structure and property of graphene nanoplatelet networks formed by an electric field in a poly(lactic acid) matrix. J. Rheol. 2017, 61, 291–303. [Google Scholar] [CrossRef]
- Ponnamma, D.; Sung, S.H.; Hong, J.S.; Ahn, K.H.; Varughese, K.T.; Thomas, S. Influence of non-covalent functionalization of carbon nanotubes on the rheological behavior of natural rubber latex nanocomposites. Eur. Polym. J. 2014, 53, 147–159. [Google Scholar] [CrossRef]
- Hong, J.S.; Hong, I.G.; Lim, H.T.; Ahn, K.H.; Lee, S.J. In situ Lubrication Dispersion of Multi-Walled Carbon Nanotubes in Poly (propylene) Melts. Macromol. Mater. Eng. 2012, 297, 279–287. [Google Scholar] [CrossRef]
- Hong, J.S.; Lee, J.H.; Nam, Y.W. Dispersion of solvent-wet carbon nanotubes for electrical CNT/polydimethylsiloxane composite. Carbon 2013, 61, 577–584. [Google Scholar] [CrossRef]
- Jing, X.; Zhao, W.; Lan, L. The effect of particle size on electric conducting percolation threshold in polymer/conducting particle composites. J. Mater. Sci. Lett. 2000, 19, 377–379. [Google Scholar] [CrossRef]
- Baneijee, P.; Mandal, B.M. Conducting Polyaniline Nanoparticle Blends with Extremely Low Percolation Thresholds. Macromolecules 1995, 28, 3940–3943. [Google Scholar] [CrossRef]
- Sumita, M.; Sakata, K.; Hayakawa, Y.; Asai, S.; Miyasaka, K.; Tanemura, M. Double percolation effect on the electrical conductivity of conductive particles filled polymer blends. Colloid Polym. Sci. 1992, 270, 134–139. [Google Scholar] [CrossRef]
- Bai, L.; He, S.; Fruehwirth, J.W.; Stein, A.; Macosko, C.W.; Cheng, X. Localizing graphene at the interface of cocontinuous polymer blends: Morphology, rheology, and conductivity of cocontinuous conductive polymer composites. J. Rheol. 2017, 61, 575. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, B.Y.; Guo, Z.X.; Yu, J. Tunable Electrical Conductivity of Carbon-Black-Filled Ternary Polymer Blends by Constructing a Hierarchical Structure. Polymers 2017, 9, 404. [Google Scholar] [CrossRef] [Green Version]
- Mao, C.; Zhu, Y.; Jiang, W. Design of Electrical Conductive Composites: Tuning the Morphology to Improve the Electrical Properties of Graphene Filled Immiscible Polymer Blends. ACS Appl. Mater. Interfaces 2012, 4, 5281. [Google Scholar] [CrossRef] [PubMed]
- Foulger, S.H. Reduced Percolation Thresholds of Immiscible Conductive Blends. J. Polym. Sci. Part B Polym. Phys. 1999, 37, 1899–1910. [Google Scholar] [CrossRef]
- Gubbels, F.; Jerome, R.; Teyssie, P.; Vanlathem, E.; Deltour, R.; Calderone, A.; Parente, V.; Bredas, J.L. Selective Localization of Carbon Black in Immiscible Polymer Blends: A Useful Tool To Design Electrical Conductive Composites. Macromolecules 1994, 27, 1972–1974. [Google Scholar] [CrossRef]
- Wu, S. Polymer Interface and Adhesion, 1st ed.; Marcel Dekker Inc.: New York, NY, USA, 1982. [Google Scholar]
- Virgilio, N.; Marc-aure, C.; Favis, B.D. Novel self-assembling close-packed droplet array at the interface in ternary polymer blends. Macromolecules 2009, 42, 3405–3416. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, B.; Guo, B.; Guo, Z.; Yu, J. High-temperature polymer conductors with self-assembled. Compos. Part B 2020, 192, 107989. [Google Scholar] [CrossRef]
- Kim, J.H.; Hong, J.S.; Ahn, K.H. Design of electrical conductive poly(lactic acid)/carbon black composites by induced particle aggregation. J. App. Polym. Sci. 2020, 137, 49295. [Google Scholar] [CrossRef]
- Armentano, I.; Bitinis, N.; Fortunati, E.; Mattioli, S.; Rescignano, N.; Verdejo, R.; Lopez-Manchado, M.A.; Kenny, J.M. Multifunctional nanostructured PLA materials for packaging and tissue engineering. Prog. Polym. Sci. 2013, 38, 1720. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.M.; Hong, J.S.; Ahn, K.H. Particle percolation in a poly (lactic acid)/calcium carbonate nanocomposite with a small amount of a secondary phase and its influence on the mechanical properties. Polym. Compos. 2019, 40, 4023. [Google Scholar] [CrossRef]
- Ishigami, A.; Kodama, Y.; Wagatsuma, T.; Ito, H. Evaluation of structures and morphologies of recycled PC/PET blends fabricated by high-shear kneading processing. Intern. Polym. Process. 2017, 32, 568–573. [Google Scholar] [CrossRef]
- Bigg, D.M. An Investigation of the Effect of Carbon Black Structure, Polymer Morphology, and Processing History on the Electrical Conductivity of Carbon-Black-Filled Thermoplastics. J. Rheol. 1984, 28, 501–516. [Google Scholar] [CrossRef]
- Dannenberg, E.M. Carbon black dispersion and reinforcement. Ind. Eng. Chem. 1952, 44, 813–818. [Google Scholar] [CrossRef]
- Rwei, S.P.; Manas-Zloczower, I.; Feke, D.L. Observation of carbon black agglomerate dispersion in simple shear flows. Polym. Eng. Sci. 1990, 30, 701–706. [Google Scholar] [CrossRef]
- Huang, J. Carbon black filled conducting polymers and polymer blends. Adv. Polym. Technol. 2002, 21, 299–313. [Google Scholar] [CrossRef]
- Wang, C.Y.; Bates, P.J.; Aghamirian, M.; Zak, G.; Nicholls, R.; Chen, M. Quantitative morphological analysis of carbon black in polymers used in laser transmission welding. Weld. World 2007, 51, 85–90. [Google Scholar] [CrossRef]
- Herrmann, V.; Unseld, K.; Fuchs, H.B. The scale behavior of fillers in elastomers by means of indentation tests. Colloid Polym. Sci. 2002, 280, 267–273. [Google Scholar] [CrossRef]
- Donnet, J.B.; Bansal, R.C.; Wang, M.J. Carbon Black: Science and Technology, 2nd ed.; Marcel Dekker Inc.: New York, NY, USA, 1993. [Google Scholar]
- Yao, X.; Kou, X.; Qiu, J.; Moloney, M. The generation mechanism of negative permittivity in multi-walled carbon nanotubes/polyaniline composites. RSC Adv. 2016, 6, 35378–35386. [Google Scholar] [CrossRef]
- Li, J. Exchange Coupling in P(VDF-TrFE) Copolymer Based All-Organic Composites with Giant Electrostriction. Phys. Rev. Lett. 2003, 90, 217601. [Google Scholar] [CrossRef] [Green Version]
- Sui, G.; Li, B.; Bratzel, G.; Baker, L.; Zhong, W.H.; Yang, X.P. Carbon nanofiber/polyetherimide composite membranes with special dielectric properties. Soft Matter 2009, 5, 3593–3598. [Google Scholar] [CrossRef]
- Zhang, X.; Yan, X.; He, Q.; Wei, H.; Long, J.; Guo, J.; Gu, H.; Yu, J.; Liu, J.; Ding, D.; et al. Electrically conductive polypropylene nanocomposites with negative permittivity at low carbon nanotube loading levels. ACS Appl. Mater. Interfaces 2015, 7, 6125–6138. [Google Scholar] [CrossRef]
- Silva, T.F.d.; Menezes, F.; Montagna, L.S.; Lemes, A.P.; Passador, F.R. Preparation and characterization of antistatic packaging for electronic components based on poly(lactic acid)/carbon black composites. J. Appl. Polym. Sci. 2019, 136, 47273. [Google Scholar] [CrossRef]
- Liang, J.; Yang, Q. Aggregate structure and percolation behavior in polymer/carbon black conductive composites. J. Appl. Phys. 2007, 102, 083508. [Google Scholar] [CrossRef]
- Liang, J.Z.; Yang, Q.Q. Effects of carbon black content and size on conductive properties of filled high- density polyethylene composites. Adv. Polym. Technol. 2018, 37, 2238–2245. [Google Scholar] [CrossRef]
- Sethi, D.; Ram, R.; Khastgir, D. Electrical conductivity and dynamic mechanical properties of silicon rubber-based conducting composites: Effect of cyclic deformation, pressure and temperature. Polym. Int. 2017, 66, 1295–1305. [Google Scholar] [CrossRef]
- Mallette, J.G.; Quej, L.M.; Marquez, A.; Manero, O. Carbon Black-Filled PET/HDPE Blends: Effect of the CB Structure on Rheological and Electric Properties. J. Appl. Polym. Sci. 2001, 51, 562–569. [Google Scholar] [CrossRef]
- Cui, L.; Zhang, Y.; Zhang, Y.; Zhang, X.; Zhou, W. Electrical properties and conductive mechanisms of immiscible polypropylene/Novolac blends filled with carbon black. Eur. Polym. J. 2007, 43, 5097–5106. [Google Scholar] [CrossRef]
- Yang, Q.Q.; Liang, J.Z. Electrical Properties and Morphology of Carbon Black-Filled HDPE/EVA Composites. J. Appl. Polym. Sci. 2010, 117, 1998–2002. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, H.B.; Hong, S.; Jiang, Z.G.; Gui, C.; Li, X.; Yu, Z.Z. Simultaneous Improvement in Both Electrical Conductivity and Toughness of Polyamide 6 Nanocomposites Filled with Elastomer and Carbon Black Particles. Ind. Eng. Chem. Res. 2014, 53, 2270–2276. [Google Scholar] [CrossRef]
Sample Notation | Sample Composition | Ratio of PCL to CB (wt/wt) | Mixer/Mixing Condition | ||
---|---|---|---|---|---|
Composition | PCL Based on PLA [wt.%] | CB Based on PLA [wt.%] | |||
B_PCLx | PLA/PCL4 | 4 | 0 | - | |
B_CBx | PLA/CB2 | 0 | 2 | 0 | Internal batch mixer (B) at 180 °C, 100 rpm for 8 min |
PLA/CB3 | 0 | 3 | 0 | ||
PLA/CB4 | 0 | 4 | 0 | ||
PLA/CB5 | 0 | 5 | 0 | ||
PLA/CB6 | 0 | 6 | 0 | ||
PLA/CB8.5 | 0 | 8.5 | 0 | ||
PLA/CB13 | 0 | 13 | 0 | ||
B_PCLxCBx | PLA/PCL1/CB1 | 1 | 1 | 1 | |
PLA/PCL3/CB3 | 3 | 3 | 1 | ||
PLA/PCL4/CB4 | 4 | 4 | 1 | ||
PLA/PCL5/CB5 | 5 | 5 | 1 | ||
PLA/PCL8/CB8 | 8 | 8 | 1 | ||
PLA/PCL10/CB10 | 10 | 10 | 1 |
Composite Notation | Composition | Mixer | Mixing Sequence |
---|---|---|---|
B_PCL4 | PLA/PCL4 | Internal mixer (B) | Simultaneous mixing of PLA, PCL |
H_PCL4 | high-shear kneading mixer (H) | Simultaneous mixing of PLA, PCL | |
B_CB4 | PLA/CB4 | Internal mixer (B) | Simultaneous mixing of PLA, CB |
H_CB4 | high-shear kneading mixer (H) | Simultaneous mixing of PLA, CB | |
B_PCL4/CB4 | PLA/PCL4/CB4 | Internal mixer (B) | Simultaneous mixing of PLA, PCL, CB |
H_PCL4/CB4 | high-shear kneading mixer (H) | Simultaneous mixing of PLA, PCL, CB | |
HB_PCL4/CB4 | high-shear kneading mixer (H) & Internal mixer (B) | Mixing of PLA/PCL at (H), then add CB at (B) | |
BB_PCL4/CB4 | Internal mixer (B) & Internal mixer (B) | Mixing of PLA/PCL at (B), then add CB at (B) |
Composites | αagg. [-] | Perimeter [nm] | Aspect ratio [-] | |||
---|---|---|---|---|---|---|
Number- Averaged | Weight- Averaged | Number- Averaged | Weight- Averaged | Number- Averaged | Weight- Averaged | |
B_CB3 | 68 | 120 | 1170 | 1520 | 1.8 | 1.9 |
B_CB4 | 74 | 150 | 1440 | 1810 | 1.9 | 2.0 |
B_CB5 | 160 | 300 | 1620 | 2220 | 1.9 | 2.1 |
B_PCL3CB3 | 400 | 780 | 3480 | 4780 | 2.0 | 2.3 |
B_PCL4CB4 | 510 | 1500 | 3980 | 7180 | 2.1 | 2.4 |
B_PCL5CB5 | 1100 | 2300 | 7730 | 13730 | 2.3 | 2.6 |
PCL4CB4 | αagg. [-] | Perimeter [nm] | Aspect ratio [-] | |||
---|---|---|---|---|---|---|
Number-Averaged | Weight-Averaged | Number-Averaged | Weight-Averaged | Number-Averaged | Weight-Averaged | |
H | 470 | 850 | 3830 | 5500 | 1.9 | 2.1 |
B | 510 | 1500 | 3980 | 7180 | 2.1 | 2.4 |
BB | 640 | 1340 | 4800 | 7400 | 2.2 | 2.4 |
HB | 1020 | 1770 | 7720 | 13590 | 2.2 | 2.5 |
Systems | CB Content [wt%] | 2nd Polymer Content [wt%] | Mixing Method | DC Conductivity [S/m] | Ref. |
---|---|---|---|---|---|
PLA/PCL/CB | 4 | 4 | one-step | 4 × 10−3 | this study |
PLA/PCL/CB | 10 | 10 | one-step | 1 | |
PLA/PCL/CB | 4 | 4 | two-step | 4 × 10−2 | |
PLA/CB | 5 | - | one-step | 9 × 10−9 | [32] |
PP/CB | 5 | - | one-step | 1 × 10−9 | [33] |
HDPE/CB | 7 | - | one-step | 1 × 10−10 | [34] |
10 | - | one-step | 1 × 10−1 | ||
PDMS/CB | 10 | - | one-step | 1 × 10−3 | [35] |
PET/HDPE/CB | 5 | 40 | one-step | 1 × 10−5 | [36] |
PP/Novolac/CB | 5 | 50 | one-step | 1 × 10−7 | [37] |
HDPE/EVA/CB | 12 | 40 | one-step | 1 × 10−2 | [38] |
PA6/POE-g-MA/CB | 15 | 40 | one-step | 1 × 10−4 | [39] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.H.; Hong, J.S.; Ishigami, A.; Kurose, T.; Ito, H.; Ahn, K.H. Effect of Melt-Compounding Protocol on Self-Aggregation and Percolation in a Ternary Composite. Polymers 2020, 12, 3041. https://doi.org/10.3390/polym12123041
Kim JH, Hong JS, Ishigami A, Kurose T, Ito H, Ahn KH. Effect of Melt-Compounding Protocol on Self-Aggregation and Percolation in a Ternary Composite. Polymers. 2020; 12(12):3041. https://doi.org/10.3390/polym12123041
Chicago/Turabian StyleKim, Ji Hwan, Joung Sook Hong, Akira Ishigami, Takashi Kurose, Hiroshi Ito, and Kyung Hyun Ahn. 2020. "Effect of Melt-Compounding Protocol on Self-Aggregation and Percolation in a Ternary Composite" Polymers 12, no. 12: 3041. https://doi.org/10.3390/polym12123041
APA StyleKim, J. H., Hong, J. S., Ishigami, A., Kurose, T., Ito, H., & Ahn, K. H. (2020). Effect of Melt-Compounding Protocol on Self-Aggregation and Percolation in a Ternary Composite. Polymers, 12(12), 3041. https://doi.org/10.3390/polym12123041