Numerical Modeling of Ink Widening and Coating Gap in Roll-to-Roll Slot-Die Coating of Solid Oxide Fuel Cell Electrolytic Layer
Abstract
:1. Introduction
2. Mathematical Modeling
- Step 1.
- Measure the ink properties: viscosity, density, and surface tension.
- Step 2.
- Measure the contact angle in the absence of injection height.
- Step 3.
- Calculate the volume of injected ink and the shape factor to determine the widened length of the droplet of ink [19].
- Step 4.
- Calculate the widened length and the ratio of the change of the droplet radius of ink deposited on a substrate (r(t) − re) to the ink droplet radius at 0 mm of injection height (re) (named widening ratio, wr) using Equations (1) and (2), respectively.
- Step 5.
- Calculate the coated layer width and thickness (named coating width and coating thickness, respectively) using Equations (3) and (5), respectively.
3. Experimental Verification
3.1. Experimental Conditions
3.2. Experimental Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lee, J.; Byeon, J.; Lee, C. Theories and control technologies for web handling in the roll-to-roll manufacturing process. Int. J. Precision Eng. Manuf. Green Technol. 2020, 7, 525–544. [Google Scholar] [CrossRef]
- Kapur, N. A parametric study of direct gravure coating. Chem. Eng. Sci. 2003, 58, 2875–2882. [Google Scholar] [CrossRef]
- Tseng, S.-R. Multilayer polymer light-emitting diodes by blade coating method. Appl. Phys. Lett. 2008, 93, 382. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, M.S.; Haroon, S.K. Low-flow limit in slot coating: Theory and experiments. AIChE J. 2004, 46, 1907–1917. [Google Scholar] [CrossRef]
- Lin, C.-F.; Wong, D.S.H.; Liu, T.-J.; Wu, P.-Y. Operating windows of slot die coating: Comparison of theoretical predictions with experimental observations. Adv. Polym. Technol. J. Polym. Process. Inst. 2010, 29, 31–44. [Google Scholar] [CrossRef]
- Krebs, F.C.; Jan, F.; Jørgensen, M. Product integration of compact roll-to-roll processed polymer solar cell modules: Methods and manufacture using flexographic printing, slot-die coating and rotary screen printing. J. Mater. Chem. 2010, 20, 8994–9001. [Google Scholar] [CrossRef]
- Lee, K.; Spendelow, J.S.; Choe, Y.; Fujimoto, C.; Kim, Y. An operationally flexible fuel cell based on quaternary ammonium-biphosphate ion pairs. Nat. Energy 2016, 1, 16120. [Google Scholar] [CrossRef]
- Tran, K.; Nguyen, T.Q.; Bartrom, A.M.; Sadiki, A.; Haan, J.L. A fuel-flexible alkaline direct liquid fuel cell. Fuel Cells 2014, 14, 834–841. [Google Scholar] [CrossRef]
- Jo, M.; Lee, J.; Kim, S.; Cho, G.; Lee, T.; Lee, C. Web Unevenness Due to Thermal Deformation in the Roll-to-Roll Manufacturing Process. Appl. Sci. 2020, 10, 8636. [Google Scholar] [CrossRef]
- Ruschak, K.J. Limiting flow in a pre-metered coating device. Chem. Eng. Sci. 1976, 31, 1057–1060. [Google Scholar] [CrossRef]
- Lee, K.-Y.; Liu, L.-D.; Liu, T.-J. Minimum wet thickness in extrusion slot coating. Chem. Eng. Sci. 1992, 47, 1703–1713. [Google Scholar] [CrossRef]
- Ning, C.-Y.; Tsai, C.-C.; Liu, T.-J. The effect of polymer additives on extrusion slot coating. Chem. Eng. Sci. 1996, 51, 3289–3297. [Google Scholar] [CrossRef]
- Yang, C.K.; Wong, D.S.H.; Liu, T.J. The effects of polymer additives on the operating windows of slot coating. Polym. Eng. Sci. 2004, 44, 1970–1976. [Google Scholar] [CrossRef]
- Lee, J.; Kim, S.; Lee, C. Surface drying for brittle material coating without crack defects in large-area roll-to-roll coating system. Int. J. Precis. Eng. Manuf. Green Technol. 2019, 6, 723–730. [Google Scholar] [CrossRef]
- Park, J.; Kim, S.; Lee, C. An analysis of pinned edge layer of slot-die coated film in roll-to-roll green manufacturing system. Int. J. Precis. Eng. Manuf. Green Technol. 2018, 5, 247–254. [Google Scholar] [CrossRef]
- Kim, S.; Lee, J.; Lee, C. Computational fluid dynamics model for thickness and uniformity prediction of coating layer in slot-die process. Int. J. Adv. Manuf. Technol. 2019, 104, 2991–2997. [Google Scholar] [CrossRef]
- Kang, H.; Park, J.; Shin, K. Statistical analysis for the manufacturing of multi-strip patterns by roll-to-roll single slot-die systems. Robot. Comput. Integr. Manuf. 2014, 30, 363–368. [Google Scholar] [CrossRef]
- Higgins, B.G.; Lawrence, E.S. Capillary pressure and viscous pressure drop set bounds on coating bead operability. Chem. Eng. Sci. 1980, 35, 673–682. [Google Scholar] [CrossRef]
- Harth, M.; Schuber, D.W. Simple approach for spreading dynamics of polymeric fluids. Macromol. Chem. Phys. 2012, 213, 654–665. [Google Scholar] [CrossRef]
- Park, J.; Kim, D.; Lee, C. Contact angle control of sessile drops on a tensioned web. Appl. Surf. Sci. 2018, 437, 329–335. [Google Scholar] [CrossRef]
- Lee, J.; Kim, S.; Lee, C. Large area electrolyte coating through surface and interface engineering in roll-to-roll slot-die coating process. J. Ind. Eng. Chem. 2019, 76, 443–449. [Google Scholar] [CrossRef]
- Lee, J.; Byeon, J.; Lee, C. Fabrication of thickness-controllable double layer electrolyte using roll-to-roll additive manufacturing system. Int. J. Precis. Eng. Manuf. Green Technol. 2020, 7, 635–642. [Google Scholar] [CrossRef]
Properties | Value | |
---|---|---|
Solution | Dielectric Solution | YSZ Solution |
Radius of sessile () | 0.167 mm | 0.187 mm |
Surface tension of solution | 26.68 N/mm | 28.52 N/mm |
Viscosity | 0.08 Pa·s | 0.03 Pa·s |
Weight percent | 43.2% | 36.8% |
Solvent | Acetone | Ethanol 3: Toluene 7 |
Process Condition | Value |
---|---|
Tension | 2.7 kgf |
Web speed | 1 m/min |
Width of Coater | 120 mm |
Coating gap | 100–500 μm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Lee, J.; Jo, M.; Lee, C. Numerical Modeling of Ink Widening and Coating Gap in Roll-to-Roll Slot-Die Coating of Solid Oxide Fuel Cell Electrolytic Layer. Polymers 2020, 12, 2927. https://doi.org/10.3390/polym12122927
Kim S, Lee J, Jo M, Lee C. Numerical Modeling of Ink Widening and Coating Gap in Roll-to-Roll Slot-Die Coating of Solid Oxide Fuel Cell Electrolytic Layer. Polymers. 2020; 12(12):2927. https://doi.org/10.3390/polym12122927
Chicago/Turabian StyleKim, Seongyong, Jongsu Lee, Minho Jo, and Changwoo Lee. 2020. "Numerical Modeling of Ink Widening and Coating Gap in Roll-to-Roll Slot-Die Coating of Solid Oxide Fuel Cell Electrolytic Layer" Polymers 12, no. 12: 2927. https://doi.org/10.3390/polym12122927
APA StyleKim, S., Lee, J., Jo, M., & Lee, C. (2020). Numerical Modeling of Ink Widening and Coating Gap in Roll-to-Roll Slot-Die Coating of Solid Oxide Fuel Cell Electrolytic Layer. Polymers, 12(12), 2927. https://doi.org/10.3390/polym12122927