Facile Fabric Detoxification Treatment Method Using Microwave and Polyethyleneimine Against Nerve Gas Agents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the PEI-Treated Polypropylene Fabrics
2.3. Test of the Detoxification Properties of the PEI-Treated Polypropylene Fabrics
2.4. Characterization and Evaluation of the PEI-Treated Polypropylene Fabrics
3. Results and Discussions
3.1. Optimization of the Microwave Curing Time of the PEI-Treated Polypropylene Fabrics
3.2. Chemical and Morphological Changes of the Polypropylene Fabrics
3.3. Detoxification Properties of the PEI-Treated Polypropylene Fabrics
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wiener, S.W.; Hoffman, R.S. Nerve agents: A comprehensive review. J. Intensive Care Med. 2014, 19, 22–37. [Google Scholar] [CrossRef] [PubMed]
- Sidell, F.R.; Borak, J. Chemical warfare agents: II. Nerve agents. Ann. Emerg. Med. 1992, 21, 865–871. [Google Scholar] [CrossRef]
- Mercey, G.; Verdelet, T.; Renou, J.; Kliachyna, M.; Baati, R.; Nachon, F.; Jean, L.; Renard, P.Y. Reactivators of acetylcholinesterase inhibited by organophosphorus nerve agents. Acc. Chem. Res. 2012, 45, 756–766. [Google Scholar] [CrossRef]
- Costanzi, S.; Machado, J.H.; Mitchell, M. Nerve agents: What they are, how they work, how to counter them. ACS Chem. Neurosci. 2018, 9, 873–885. [Google Scholar] [CrossRef]
- Tsai, P.C.; Fox, N.; Bigley, A.N.; Harvey, S.P.; Barondeau, D.P.; Raushel, F.M. Enzymes for the homeland defense: Optimizing phosphotriesterase for the hydrolysis of organophosphate nerve agents. Biochemistry 2012, 51, 6463–6475. [Google Scholar] [CrossRef]
- Popiel, S.; Sankowska, M. Determination of chemical warfare agents and related compounds in environmental samples by solid-phase microextraction with gas chromatography. J. Chromatogr. A 2011, 1218, 8457–8479. [Google Scholar] [CrossRef]
- Ying, W.B.; Kim, S.; Lee, M.W.; Go, N.Y.; Jung, H.; Ryu, S.G.; Lee, B.; Lee, K.J. Toward a detoxification fabric against nerve gas agents: Guanidine-functionalized poly [2-(3-butenyl)-2-oxazoline]/Nylon-6, 6 nanofibers. RSC Adv. 2017, 7, 15246–15254. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.; Moon, D.S.; Ryu, S.G.; Lee, B.; Lee, K.J. Highly functionalized thermoplastic polyurethane from surface click reactions. J. Appl. Polym. Sci. 2018, 135, 46519. [Google Scholar] [CrossRef]
- Lee, J.; Seo, E.; Yoo, M.; Kim, S.; Choi, J.; Jung, H.; Lee, H.W.; Lee, H.M.; Kim, H.Y.; Lee, B. Preparation of non-woven nanofiber webs for detoxification of nerve gases. Polymer 2019, 179, 121664. [Google Scholar] [CrossRef]
- Kim, S.; Ying, W.B.; Jung, H.; Ryu, S.G.; Lee, B.; Lee, K.J. Zirconium hydroxide-coated nanofiber mats for nerve agent decontamination. Chem. Asian J. 2017, 12, 698–705. [Google Scholar] [CrossRef]
- Kwon, W.; Jeong, E. Detoxification Properties of Guanidinylated Chitosan Against Chemical Warfare Agents and Its Application to Military Protective Clothing. Polymers 2020, 12, 1461. [Google Scholar] [CrossRef] [PubMed]
- Mendonca, M.L.; Snurr, R.Q. Computational Screening of Metal–Organic Framework-Supported Single-Atom Transition-Metal Catalysts for the Gas-Phase Hydrolysis of Nerve Agents. ACS Catal. 2019, 10, 1310–1323. [Google Scholar] [CrossRef]
- Jeong, K.; Shim, J.; Chung, W.Y.; Kye, Y.S.; Kim, D. Diisopropyl fluorophosphate (DFP) degradation activity using transition metal–dipicolylamine complexes. Appl. Organomet. Chem. 2018, 32, e4383. [Google Scholar] [CrossRef]
- Royuela, S.; Millán, G.S.; Mancheño, M.J.; Ramos, M.; Segura, J.L.; Navarro, J.A.; Zamora, F. Catalytically Active Imine-based Covalent Organic Frameworks for Detoxification of Nerve Agent Simulants in Aqueous Media. Materials 2019, 12, 1974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fouda, M.M.; El Shafei, A.; Sharaf, S.; Hebeish, A. Microwave curing for producing cotton fabrics with easy care and antibacterial properties. Carbohydr. Polym. 2009, 77, 651–655. [Google Scholar] [CrossRef]
- Zhao, X.; Min, J.; He, J.X. Effect of microwave curing on antimicrobial activity of chitosan biguanidine hydrochloride treated wool fabrics. J. Text. Inst. 2011, 102, 801–807. [Google Scholar] [CrossRef]
- Carro, C.; Romero, I.; Boto, A. Microwave versus conventional light activation of o-radical scission processes. Eur. J. Org. Chem. 2017, 2, 373–380. [Google Scholar] [CrossRef]
- Mishra, S.; Sinha, S.; Dey, K.P.; Sen, G. Synthesis, characterization and applications of polymethylmethacrylate grafted psyllium as flocculant. Carbohydr. Polym. 2014, 99, 462–468. [Google Scholar] [CrossRef]
- Khalil, E. A technical overview on protective clothing against chemical hazards. AASCIT J. Chem. 2015, 2, 67–76. [Google Scholar]
- Sathe, M.; Sharma, P.K.; Singh, V.K.; Tripathi, N.K.; Verma, V.; Sharma, S.P.; Tomar, L.N.S.; Chaturvedi, A.; Yadav, S.S.; Thakare, V.B.; et al. Chemical protection studies of activated carbon spheres based permeable protective clothing against sulfur mustard, a chemical warfare agent. Def. Sci. J. 2019, 69, 577–584. [Google Scholar] [CrossRef] [Green Version]
- Krylova, V.; Dukštienė, N. Synthesis and characterization of Ag2S layers formed on polypropylene. J. Chem. 2013, 2013, 987879. [Google Scholar] [CrossRef] [Green Version]
- Kasprzak, A.; Popławska, M.; Bystrzejewski, M.; Łabędź, O.; Grudziński, I.P. Conjugation of polyethylenimine and its derivatives to carbon-encapsulated iron nanoparticles. RSC Adv. 2015, 5, 85556–85567. [Google Scholar] [CrossRef]
- Armağan, O.G.; Kayaoglu, B.K.; Karakas, H.C.; Guner, F.S. Adhesion strength behaviour of plasma pre-treated and laminated polypropylene nonwoven fabrics using acrylic and polyurethane-based adhesives. J. Ind. Text. 2014, 43, 396–414. [Google Scholar] [CrossRef]
- Thakur, V.K.; Thakur, M.K. Fibers from natural resources. In Handbook of Composites from Renewable Materials, Functionalization; Kessler, M.R., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2017; Volume 4, pp. 303–304. [Google Scholar]
- Kim, Y.K.; Yoo, H.S.; Kim, M.C.; Hwang, H.C.; Ryu, S.G.; Lee, H.W. Decontamination of Chemical Warfare Agent Simulants using Vapor-phase Hydrogen Peroxide. Korean Chem. Eng. Res. 2014, 52, 360–365. [Google Scholar] [CrossRef] [Green Version]
- Kwon, W.; Kim, C.; Jeong, E. Comparative Study of Detoxification Properties of 3-Aminopropyl trimethoxysilane and Chitosan treated Cotton Fabric. Text. Color. Finish. 2020, 32, 96–102. [Google Scholar]
- Ploskonka, A.M.; Decoste, J.B. Insight into organophosphate chemical warfare agent simulant hydrolysis in metal-organic frameworks. J. Hazard. Mater. 2019, 375, 191–197. [Google Scholar] [CrossRef]
Sample | Atomic Percentage | Atomic Ratios | ||
---|---|---|---|---|
C | O | N | N/C | |
Untreated polypropylene | 95.68 | 4.32 | - | - |
1 wt % PEI-treated polypropylene | 92.85 | 5.99 | 1.15 | 0.012 |
5 wt % PEI-treated polypropylene | 90.66 | 7.62 | 1.72 | 0.019 |
10 wt % PEI-treated polypropylene | 91.34 | 6.50 | 2.15 | 0.024 |
Sample | Atomic Percentage | Atomic Ratios | ||
---|---|---|---|---|
C | O | N | N/C | |
Untreated polypropylene | 95.55 | 4.45 | - | - |
10 wt % PEI-treated polypropylene | 73.62 | 20.37 | 6.00 | 0.081 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, W.; Kim, C.; Kim, J.; Kim, J.; Jeong, E. Facile Fabric Detoxification Treatment Method Using Microwave and Polyethyleneimine Against Nerve Gas Agents. Polymers 2020, 12, 2861. https://doi.org/10.3390/polym12122861
Kwon W, Kim C, Kim J, Kim J, Jeong E. Facile Fabric Detoxification Treatment Method Using Microwave and Polyethyleneimine Against Nerve Gas Agents. Polymers. 2020; 12(12):2861. https://doi.org/10.3390/polym12122861
Chicago/Turabian StyleKwon, Woong, Changkyu Kim, Jiyun Kim, Jongwon Kim, and Euigyung Jeong. 2020. "Facile Fabric Detoxification Treatment Method Using Microwave and Polyethyleneimine Against Nerve Gas Agents" Polymers 12, no. 12: 2861. https://doi.org/10.3390/polym12122861
APA StyleKwon, W., Kim, C., Kim, J., Kim, J., & Jeong, E. (2020). Facile Fabric Detoxification Treatment Method Using Microwave and Polyethyleneimine Against Nerve Gas Agents. Polymers, 12(12), 2861. https://doi.org/10.3390/polym12122861