Laser Ablation-Assisted Synthesis of Poly (Vinylidene Fluoride)/Au Nanocomposites: Crystalline Phase and Micromechanical Finite Element Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Au Nanoparticles
2.3. Fabrication of the Nanocomposite Films
2.4. Material Characterization
2.5. Finite Element Simulation
3. Results and Discussions
3.1. SEM
3.2. FTIR Spectroscopy
3.3. XRD
3.4. TGA
3.5. Dielectric Constants Determination
3.6. Mechanical Properties
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Orooji, Y.; Liang, F.; Razmjou, A.; Liu, G.; Jin, W. Preparation of anti-adhesion and bacterial destructive polymeric ultrafiltration membranes using modified mesoporous carbon. Sep. Purif. Technol. 2018, 205, 273–283. [Google Scholar] [CrossRef]
- Ghasali, E.; Palizdar, Y.; Jam, A.; Rajaei, H.; Ebadzadeh, T. Effect of Al and Mo addition on phase formation, mechanical and microstructure properties of spark plasma sintered iron alloy. Mater. Today Commun. 2017, 13, 221–231. [Google Scholar] [CrossRef]
- Majidian, H.; Ghasali, E.; Ebadzadeh, T.; Razavi, M. Effect of Heating Method on Microstructure and Mechanical Properties of Zircon Reinforced Aluminum Composites. Mater. Res. 2016, 19, 1443–1448. [Google Scholar] [CrossRef]
- Pakseresht, A.H.; Javadi, A.H.; Nejati, M.; Shirvanimoghaddam, K.; Ghasali, E.; Teimouri, R. Statistical analysis and multiobjective optimization of process parameters in plasma spraying of partially stabilized zirconia. Int. J. Adv. Manuf. Technol. 2014, 75, 739–753. [Google Scholar] [CrossRef]
- Maity, K.; Mandal, D. All-organic high-performance piezoelectric nanogenerator with multilayer assembled electrospun nanofiber mats for self-powered multifunctional sensors. ACS Appl. Mater. Interfaces 2018, 10, 18257–18269. [Google Scholar] [CrossRef]
- Trung, T.Q.; Lee, N.E. Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoringand personal healthcare. Adv. Mater. 2016, 28, 4338–4372. [Google Scholar] [CrossRef]
- Yan, J.; Liu, M.; Jeong, Y.G.; Kang, W.; Li, L.; Zhao, Y.; Deng, N.; Cheng, B.; Yang, G. Performance enhancements in poly (vinylidene fluoride)-based piezoelectric nanogenerators for efficient energy harvesting. Nano Energy 2019, 56, 662–692. [Google Scholar] [CrossRef]
- Huang, Y.; Fan, X.; Chen, S.C.; Zhao, N. Emerging technologies of flexible pressure sensors: Materials, modeling, devices, and manufacturing. Adv. Funct. Mater. 2019, 29, 1808509. [Google Scholar] [CrossRef]
- Fakhri, P.; Amini, B.; Bagherzadeh, R.; Kashfi, M.; Latifi, M.; Yavari, N.; Kani, S.A.; Kong, L. Flexible hybrid structure piezoelectric nanogenerator based on ZnO nanorod/PVDF nanofibers with improved output. RSC Adv. 2019, 9, 10117–10123. [Google Scholar] [CrossRef] [Green Version]
- Kashfi, M.; Fakhri, P.; Amini, B.; Yavari, N.; Rashidi, B.; Kong, L.; Bagherzadeh, R. A novel approach to determining piezoelectric properties of nanogenerators based on PVDF nanofibers using iterative finite element simulation for walking energy harvesting. J. Ind. Text. 2020. [Google Scholar] [CrossRef]
- Jaleh, B.; Gavary, N.; Fakhri, P.; Muensit, N.; Taheri, S.M. Characteristics of PVDF membranes irradiated by electron beam. Membranes 2015, 5, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuh, Y.-K.; Chen, P.-C.; Huang, Z.-M.; Ho, H.-C. Self-powered sensing elements based on direct-write, highly flexible piezoelectric polymeric nano/microfibers. Nano Energy 2015, 11, 671–677. [Google Scholar] [CrossRef]
- Shepelin, N.A.; Glushenkov, A.M.; Lussini, V.C.; Fox, P.J.; Dicinoski, G.W.; Shapter, J.G.; Ellis, A.V. New developments in composites, copolymer technologies and processing techniques for flexible fluoropolymer piezoelectric generators for efficient energy harvesting. Energy Environ. Sci. 2019, 12, 1143–1176. [Google Scholar] [CrossRef]
- Bagherzadeh, R.; Bafqi, M.S.S.; Shemshaki, N.S.; Moarref, Z.; Ghasemi-Nezhad, S.; Maleki, F.; Fakhri, P. Flexible and stretchable nanofibrous piezo-and triboelectric wearable electronics. In Energy Harvesting Properties of Electrospun Nanofibers, 1st ed.; Lin, T., Fang, J., Eds.; Institute of Physics Publishing: Bristol, UK, 2020. [Google Scholar]
- Martins, P.; Lopes, A.; Lanceros-Mendez, S. Electroactive phases of poly (vinylidene fluoride): Determination, processing and applications. Prog. Polym. Sci. 2014, 39, 683–706. [Google Scholar] [CrossRef]
- Sodagar, S.; Jaleh, B.; Fakhri, P.; Kashfi, M.; Mohazzab, B.F.; Momeni, A. Flexible piezoelectric PVDF/NDs nanocomposite films: Improved electroactive properties at low concentration of nanofiller and numerical simulation using finite element method. J. Polym. Res. 2020, 27, 1–10. [Google Scholar] [CrossRef]
- Mahadeva, S.K.; Berring, J.; Walus, K.; Stoeber, B. Effect of poling time and grid voltage on phase transition and piezoelectricity of poly (vinyledene fluoride) thin films using corona poling. J. Phys. D Appl. Phys. 2013, 46, 285305. [Google Scholar] [CrossRef]
- Li, L.; Zhang, M.; Rong, M.; Ruan, W. Studies on the transformation process of PVDF from α to β phase by stretching. RSC Adv. 2014, 4, 3938–3943. [Google Scholar] [CrossRef]
- Andrew, J.; Clarke, D. Effect of electrospinning on the ferroelectric phase content of polyvinylidene difluoride fibers. Langmuir 2008, 24, 670–672. [Google Scholar] [CrossRef]
- Pan, C.-T.; Yen, C.-K.; Wang, S.-Y.; Lai, Y.-C.; Lin, L.; Huang, J.; Kuo, S.-W. Near-field electrospinning enhances the energy harvesting of hollow PVDF piezoelectric fibers. RSC Adv. 2015, 5, 85073–85081. [Google Scholar] [CrossRef]
- Pan, C.-T.; Yen, C.-K.; Wu, H.-C.; Lin, L.; Lu, Y.-S.; Huang, J.; Kuo, S.-W. Significant piezoelectric and energy harvesting enhancement of poly (vinylidene fluoride)/polypeptide fiber composites prepared through near-field electrospinning. J. Mater. Chem. A 2015, 3, 6835–6843. [Google Scholar] [CrossRef]
- Gebrekrstos, A.; Madras, G.; Bose, S. Journey of Electroactive β-Polymorph of Poly (vinylidenefluoride) from Crystal Growth to Design to Applications. Cryst. Growth Des. 2019, 19, 5441–5456. [Google Scholar] [CrossRef]
- Gao, X.; Liang, S.; Ferri, A.; Huang, W.; Rouxel, D.; Devaux, X.; Li, X.-G.; Yang, H.; Chshiev, M.; Desfeux, R. Enhancement of ferroelectric performance in PVDF: Fe3O4 nanocomposite based organic multiferroic tunnel junctions. Appl. Phys. Lett. 2020, 116, 152905. [Google Scholar] [CrossRef] [Green Version]
- Chakhchaoui, N.; Farhan, R.; Eddiai, A.; Meddad, M.; Cherkaoui, O.; Mazroui, M.H.; Boughaleb, Y.; Van Langenhove, L. Improvement of the electroactive β-phase nucleation and piezoelectric properties of PVDF-HFP thin films influenced by TiO2 nanoparticles. Mater. Today Proc. 2020. [Google Scholar] [CrossRef]
- Huang, S.; Hong, S.; Su, Y.; Jiang, Y.; Fukushima, S.; Gill, T.M.; Yilmaz, N.E.D.; Tiwari, S.; Nomura, K.-I.; Kalia, R.K. Enhancing combustion performance of nano-Al/PVDF composites with β-PVDF. Combust. Flame 2020, 219, 467–477. [Google Scholar] [CrossRef]
- Toprak, A.; Tigli, O. MEMS scale PVDF-TrFE-based piezoelectric energy harvesters. J. Microelectromech. Syst. 2015, 24, 1989–1997. [Google Scholar] [CrossRef]
- Wen, F.; Xu, Z.; Tan, S.; Xia, W.; Wei, X.; Zhang, Z. Chemical bonding-induced low dielectric loss and low conductivity in high-K poly (vinylidenefluoride-trifluorethylene)/graphene nanosheets nanocomposites. ACS Appl. Mater. Interfaces 2013, 5, 9411–9420. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhang, S.; Srisombat, L.o.; Lee, T.R.; Advincula, R.C. Gold-Nanoparticle-and Gold-Nanoshell-Induced Polymorphism in Poly (vinylidene fluoride). Macromol. Mater. Eng. 2011, 296, 178–184. [Google Scholar] [CrossRef]
- Mandal, D.; Henkel, K.; Schmeißer, D. The electroactive β-phase formation in poly (vinylidene fluoride) by gold nanoparticles doping. Mater. Lett. 2012, 73, 123–125. [Google Scholar] [CrossRef]
- Kumaran, R.; Kumar, S.D.; Balasubramanian, N.; Alagar, M.; Subramanian, V.; Dinakaran, K. Enhanced electromagnetic interference shielding in a Au–MWCNT composite nanostructure dispersed PVDF thin films. J. Phys. Chem. C 2016, 120, 13771–13778. [Google Scholar] [CrossRef]
- Fakhri, P.; Mahmood, H.; Jaleh, B.; Pegoretti, A. Improved electroactive phase content and dielectric properties of flexible PVDF nanocomposite films filled with Au-and Cu-doped graphene oxide hybrid nanofiller. Synth. Met. 2016, 220, 653–660. [Google Scholar] [CrossRef]
- Toor, A.; So, H.; Pisano, A.P. Improved dielectric properties of polyvinylidene fluoride nanocomposite embedded with poly (vinylpyrrolidone)-coated gold nanoparticles. ACS Appl. Mater. Interfaces 2017, 9, 6369–6375. [Google Scholar] [CrossRef] [PubMed]
- Motamedi, A.S.; Mirzadeh, H.; Hajiesmaeilbaigi, F.; Bagheri-Khoulenjani, S.; Shokrgozar, M.A. Piezoelectric electrospun nanocomposite comprising Au NPs/PVDF for nerve tissue engineering. J. Biomed. Mater. Res. Part A 2017, 105, 1984–1993. [Google Scholar] [CrossRef] [PubMed]
- Mahanty, B.; Ghosh, S.K.; Sarkar, S.; Mandal, D. Improved mechanical energy harvesting by Au-nanoparticles interfaced poly (vinylidene fluoride) electrospun fibers. AIP Conf. Proc. 2019, 2115, 030607. [Google Scholar]
- Kushwah, M.; Sagar, R.; Rogachev, A.; Gaur, M. Dielectric, pyroelectric and polarization behavior of polyvinylidene fluoride (PVDF)-gold nanoparticles (AuNPs) nanocomposites. Vacuum 2019, 166, 298–306. [Google Scholar] [CrossRef]
- Singh, D.; Singh, N.; Garg, A.; Gupta, R.K. Engineered thiol anchored Au-BaTiO3/PVDF polymer nanocomposite as efficient dielectric for electronic applications. Compos. Sci. Technol. 2019, 174, 158–168. [Google Scholar]
- Iravani, S.; Korbekandi, H.; Mirmohammadi, S.V.; Zolfaghari, B. Synthesis of silver nanoparticles: Chemical, physical and biological methods. Res. Pharm. Sci. 2014, 9, 385. [Google Scholar] [PubMed]
- Zhang, D.; Goökce, B.; Barcikowski, S. Laser synthesis and processing of colloids: Fundamentals and applications. Chem. Rev. 2017, 117, 3990–4103. [Google Scholar] [CrossRef]
- Mahmoodi, M.; Vakilifard, M. A comprehensive micromechanical modeling of electro-thermo-mechanical behaviors of CNT reinforced smart nanocomposites. Mater. Des. 2017, 122, 347–365. [Google Scholar] [CrossRef]
- Hussein, A.; Ramasundaram, S.; Kim, B. A novel method for fabricating bioinspired layered nanocomposites using aligned graphene oxide/PVDF and their micromechanical modeling. Mater. Today Commun. 2020, 24, 101050. [Google Scholar] [CrossRef]
- Kashfi, M.; Majzoobi, G.; Bonora, N.; Iannitti, G.; Ruggiero, A.; Khademi, E. A new overall nonlinear damage model for fiber metal laminates based on continuum damage mechanics. Eng. Fract. Mech. 2019, 206, 21–33. [Google Scholar] [CrossRef]
- Sokołowski, D.; Kamiński, M. Homogenization of carbon/polymer composites with anisotropic distribution of particles and stochastic interface defects. Acta Mech. 2018, 229, 3727–3765. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, A.; Maiti, P.; Kumar, D.; Parkash, O. Mechanical and dielectric properties of CaCu3Ti4O12 and La doped CaCu3Ti4O12 poly (vinylidene fluoride) composites. Compos. Sci. Technol. 2014, 93, 83–89. [Google Scholar] [CrossRef]
- Ramírez, M.A.; Parra, R.; Reboredo, M.M.; Varela, J.A.; Castro, M.S.; Ramajo, L. Elastic modulus and hardness of CaTiO3, CaCu3Ti4O12 and CaTiO3/CaCu3Ti4O12 mixture. Mater. Lett. 2010, 64, 1226–1228. [Google Scholar] [CrossRef]
- Ramos, M.; Ortiz-Jordan, L.; Hurtado-Macias, A.; Flores, S.; Elizalde-Galindo, J.T.; Rocha, C.; Torres, B.; Zarei-Chaleshtori, M.; Chianelli, R.R. Hardness and elastic modulus on six-fold symmetry gold nanoparticles. Materials 2013, 6, 198–205. [Google Scholar] [CrossRef] [Green Version]
- KÖSter, W.; Franz, H. POISSON’S RATIO FOR METALS AND ALLOYS. Metall. Rev. 1961, 6, 1–56. [Google Scholar] [CrossRef]
- Yeh, Y.-C.; Creran, B.; Rotello, V.M. Gold nanoparticles: Preparation, properties, and applications in bionanotechnology. Nanoscale 2012, 4, 1871–1880. [Google Scholar] [CrossRef]
- Jaleh, B.; Fakhri, P. Infrared and Fourier transform infrared spectroscopy for nanofillers and their nanocomposites. In Spectroscopy of Polymer Nanocomposites, 1st ed.; Thomas, S., Rouxel, D., Ponnamma, D., Eds.; William Andrew: Norwich, NY, USA, 2016; pp. 112–129. [Google Scholar]
- Jaleh, B.; Jabbari, A. Evaluation of reduced graphene oxide/ZnO effect on properties of PVDF nanocomposite films. Appl. Surf. Sci. 2014, 320, 339–347. [Google Scholar] [CrossRef]
- Cai, X.; Lei, T.; Sun, D.; Lin, L. A critical analysis of the α, β and γ phases in poly (vinylidene fluoride) using FTIR. RSC Adv. 2017, 7, 15382–15389. [Google Scholar] [CrossRef] [Green Version]
- Jaleh, B.; Sodagar, S.; Momeni, A.; Jabbari, A. Nanodiamond particles/PVDF nanocomposite flexible films: Thermal, mechanical and physical properties. Mater. Res. Express 2016, 3, 085028. [Google Scholar] [CrossRef]
- He, F.; Lau, S.; Chan, H.L.; Fan, J. High dielectric permittivity and low percolation threshold in nanocomposites based on poly (vinylidene fluoride) and exfoliated graphite nanoplates. Adv. Mater. 2009, 21, 710–715. [Google Scholar] [CrossRef]
- Kremer, F.; Schönhals, A. Broadband Dielectric Spectroscopy; Kermer, F., Schönhals, A., Eds.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Roy, A.; Dutta, B.; Bhattacharya, S. Electroactive phase nucleation and non-isothermal crystallization kinetics study in [DEMM][TFSI] ionic liquid incorporated P (VDF-HFP) co-polymer membranes. J. Mater. Sci. 2016, 51, 7814–7830. [Google Scholar] [CrossRef]
- Majzoobi, G.H.; Kashfi, M.; Bonora, N.; Iannitti, G.; Ruggiero, A.; Khademi, E. A new constitutive bulk material model to predict the uniaxial tensile nonlinear behavior of fiber metal laminates. J. Strain Anal. 2018, 53, 26–35. [Google Scholar] [CrossRef]
Year | Composite | Method for the Synthesis of Au Nanoparticles | Focus | Ref. |
---|---|---|---|---|
2011 | PVDF + Au NPsPVDF + Au NS | Reduction of HAuCl4 | Polymorphism change | [28] |
2012 | PVDF-Au | Reduction of HAuCl4 | Polymorphism change + Thermal FTIR study | [29] |
2016 | Au NP-MWCNT-PVDF | Reduction of HAuCl4 | Electromagnetic Interference Shielding | [30] |
2016 | PVDF-GO/Au NPs | Reduction of HAuCl4 | Polymorphism change + β-phase content + dielectric properties | [31] |
2017 | Au-PVDF(pp) | - | Dielectric properties | [32] |
2017 | Au NPs/PVDF | Laser ablation | Enhancement of polar phase | [33] |
2019 | ES Au-PVDF | Reduction of HAuCl4 | The voltage and Current output | [34] |
2019 | PVDF-Au NPs | Reduction of HAuCl4 | β-phase polarization behavior | [35] |
2019 | Au-BaTiO3/PVDF | Reduction of HAuCl4 | Dielectric properties | [36] |
Case Number | 1 | 2 | 3 | 4 | 5 | Average |
---|---|---|---|---|---|---|
Weight fraction (%) | 10 | 10 | 10 | 10 | 10 | 10 |
Number of inclusion | 10 | 10 | 10 | 10 | 10 | 10 |
Allowable relative particle distance | 0.001 | 0.003 | 0.005 | 0.01 | 0.1 | 0.0238 ± 0.04 |
3D model of RVE | | | | | | |
Tensile modulus (MPa) | 938.45 | 935.75 | 933.57 | 945.17 | 936.33 | 937.85 ± 3.97 |
Density (kg/m3) | 1899.78 | 1899.78 | 1899.78 | 1899.78 | 1899.78 | 1899.78 |
Weight Fraction of Au Nanoparticles (%) | 0.05 | 0.1 | 0.5 |
---|---|---|---|
Tensile modulus (MPa) | 860.08 | 860.16 | 860.80 |
Shear modulus (MPa) | 320.93 | 320.96 | 321.21 |
Poisson’s ratio | 0.34 | 0.34 | 0.34 |
Density (kg/m3) | 1780.81 | 1781.62 | 1788.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orooji, Y.; Jaleh, B.; Homayouni, F.; Fakhri, P.; Kashfi, M.; Torkamany, M.J.; Yousefi, A.A. Laser Ablation-Assisted Synthesis of Poly (Vinylidene Fluoride)/Au Nanocomposites: Crystalline Phase and Micromechanical Finite Element Analysis. Polymers 2020, 12, 2630. https://doi.org/10.3390/polym12112630
Orooji Y, Jaleh B, Homayouni F, Fakhri P, Kashfi M, Torkamany MJ, Yousefi AA. Laser Ablation-Assisted Synthesis of Poly (Vinylidene Fluoride)/Au Nanocomposites: Crystalline Phase and Micromechanical Finite Element Analysis. Polymers. 2020; 12(11):2630. https://doi.org/10.3390/polym12112630
Chicago/Turabian StyleOrooji, Yasin, Babak Jaleh, Fatemeh Homayouni, Parisa Fakhri, Mohammad Kashfi, Mohammad Javad Torkamany, and Ali Akbar Yousefi. 2020. "Laser Ablation-Assisted Synthesis of Poly (Vinylidene Fluoride)/Au Nanocomposites: Crystalline Phase and Micromechanical Finite Element Analysis" Polymers 12, no. 11: 2630. https://doi.org/10.3390/polym12112630
APA StyleOrooji, Y., Jaleh, B., Homayouni, F., Fakhri, P., Kashfi, M., Torkamany, M. J., & Yousefi, A. A. (2020). Laser Ablation-Assisted Synthesis of Poly (Vinylidene Fluoride)/Au Nanocomposites: Crystalline Phase and Micromechanical Finite Element Analysis. Polymers, 12(11), 2630. https://doi.org/10.3390/polym12112630