Improving the Photostability of Small-Molecule-Based Organic Photovoltaics by Providing a Charge Percolation Pathway of Crystalline Conjugated Polymer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Synthesis of LGC-D073
2.1.2. Synthesis of PPDT2FBT and PPDT2CNBT
2.1.3. Other Materials
2.2. Preparation of Solutions for Photoactive Layer
2.3. Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Li, G.; Zhu, R.; Yang, Y. Polymer solar cells. Nat. Photon. 2012, 6, 153. [Google Scholar] [CrossRef]
- Li, Y. Molecular design of photovoltaic materials for polymer solar cells: Toward suitable electronic energy levels and broad absorption. Acc. Chem. Res. 2012, 45, 723–733. [Google Scholar] [CrossRef] [PubMed]
- Service, R.F. Outlook Brightens for Plastic Solar Cells. Science 2011, 332, 293. [Google Scholar] [CrossRef] [PubMed]
- Bin, H.J.; Yao, J.; Yang, Y.K.; Angunawela, I.; Sun, C.K.; Gao, L.; Ye, L.; Qiu, B.B.; Xue, L.W.; Zhu, C.H.; et al. High-Efficiency All-Small-Molecule Organic Solar Cells Based on an Organic Molecule Donor with Alkylsilyl-Thienyl Conjugated Side Chains. Adv. Mater. 2018, 30. [Google Scholar] [CrossRef]
- Fan, X.B.; Gao, J.H.; Wang, W.; Xiao, S.Q.; Zhan, C.; Lu, X.H.; Zhang, Q.C. Ladder-Type Nonacyclic Arene Bis(thieno[3,2-b]thieno)cyclopentafluorene as a Promising Building Block for Non-Fullerene Acceptors. Chem. Asian J. 2019, 14, 1814–1822. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.Y.; Qiu, N.L.; Sun, Y.N.; Ke, X.; Zhang, H.T.; Li, C.X.; Wan, X.J.; Chen, Y.S. All-Small-Molecule Organic Solar Cells Based on a Fluorinated Small Molecule Donor with High Open-Circuit Voltage of 1.07 V. Front. Chem. 2020, 8. [Google Scholar] [CrossRef]
- Qi, X.; Lo, Y.C.; Zhao, Y.F.; Xuan, L.Y.; Ting, H.C.; Wong, K.T.; Rahaman, M.; Chen, Z.J.; Xiao, L.X.; Qu, B. Two Novel Small Molecule Donors and the Applications in Bulk-Heterojunction Solar Cells. Front. Chem. 2018, 6. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Song, X.; Xie, J.; Sun, P.; Gu, P.Y.; Liu, C.M.; Chen, F.; Zhang, Q.C.; Chen, Z.K.; Huang, W. PDI Derivative through Fine-Tuning the Molecular Structure for Fullerene-Free Organic Solar Cells. ACS Appl. Mater. Interfaces 2017, 9, 29924–29931. [Google Scholar] [CrossRef] [Green Version]
- Zhou, R.M.; Jiang, Z.Y.; Yang, C.; Yu, J.W.; Feng, J.R.; Adil, M.A.; Deng, D.; Zou, W.J.; Zhang, J.Q.; Lu, K.; et al. All-small-molecule organic solar cells with over 14% efficiency by optimizing hierarchical morphologies. Nat. Commun. 2019, 10. [Google Scholar] [CrossRef]
- Ye, C.; Wang, Y.; Bi, Z.; Guo, X.; Fan, Q.; Chen, J.; Ou, X.; Ma, W.; Zhang, M. High-performance organic solar cells based on a small molecule with thieno[3,2-b]thiophene as π-bridge. Org. Electron. 2018, 53, 273–279. [Google Scholar] [CrossRef]
- Kan, B.; Zhang, Q.; Li, M.; Wan, X.; Ni, W.; Long, G.; Wang, Y.; Yang, X.; Feng, H.; Chen, Y. Solution-Processed Organic Solar Cells Based on Dialkylthiol-Substituted Benzodithiophene Unit with Efficiency near 10%. J. Am. Chem. Soc. 2014, 136, 15529–15532. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Xiao, Z.; Lu, S.; Zajaczkowski, W.; Pisula, W.; Hanssen, E.; White, J.M.; Williamson, R.M.; Subbiah, J.; Ouyang, J.; et al. A molecular nematic liquid crystalline material for high-performance organic photovoltaics. Nat. Commun. 2015, 6, 6013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Chen, C.-C.; Hong, Z.; Gao, J.; Yang, Y.; Zhou, H.; Dou, L.; Li, G.; Yang, Y. Solution-processed small-molecule solar cells: Breaking the 10% power conversion efficiency. Sci. Rep. 2013, 3, 3356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.; Kan, B.; Liu, F.; Long, G.; Wan, X.; Chen, X.; Zuo, Y.; Ni, W.; Zhang, H.; Li, M.; et al. Small-molecule solar cells with efficiency over 9%. Nat. Photon. 2014, 9, 35. [Google Scholar] [CrossRef]
- Gupta, V.; Lai, L.F.; Datt, R.; Chand, S.; Heeger, A.J.; Bazan, G.C.; Singh, S.P. Dithienogermole-based solution-processed molecular solar cells with efficiency over 9%. Chem. Commun. 2016, 52, 8596–8599. [Google Scholar] [CrossRef] [PubMed]
- Kan, B.; Li, M.; Zhang, Q.; Liu, F.; Wan, X.; Wang, Y.; Ni, W.; Long, G.; Yang, X.; Feng, H.; et al. A Series of Simple Oligomer-like Small Molecules Based on Oligothiophenes for Solution-Processed Solar Cells with High Efficiency. J. Am. Chem. Soc. 2015, 137, 3886–3893. [Google Scholar] [CrossRef]
- Cheng, P.; Wang, C.-H.; Zhu, Y.; Zheng, R.; Li, T.; Chen, C.-H.; Huang, T.; Zhao, Y.; Wang, R.; Meng, D.; et al. Transparent Hole-Transporting Frameworks: A Unique Strategy to Design High-Performance Semitransparent Organic Photovoltaics. Adv. Mater. 2020, 32, 2003891. [Google Scholar] [CrossRef]
- Cheacharoen, R.; Mateker, W.R.; Zhang, Q.; Kan, B.; Sarkisian, D.; Liu, X.; Love, J.A.; Wan, X.; Chen, Y.; Nguyen, T.-Q.; et al. Assessing the stability of high performance solution processed small molecule solar cells. Sol. Energy Mater. Sol. Cells 2017, 161, 368–376. [Google Scholar] [CrossRef]
- Engmann, S.; Bokel, F.A.; Herzing, A.A.; Ro, H.W.; Girotto, C.; Caputo, B.; Hoven, C.V.; Schaible, E.; Hexemer, A.; DeLongchamp, D.M. Real-time X-ray scattering studies of film evolution in high performing small-molecule–fullerene organic solar cells. J. Mater. Chem. A 2015, 3, 8764–8771. [Google Scholar] [CrossRef]
- Hao, X.; Wang, S.; Sakurai, T.; Masuda, S.; Akimoto, K. Improvement of Stability for Small Molecule Organic Solar Cells by Suppressing the Trap Mediated Recombination. ACS Appl. Mater. Interfaces 2015, 7, 18379–18386. [Google Scholar] [CrossRef] [PubMed]
- Lim, F.J.; Krishnamoorthy, A.; Ho, G.W. All-in-one solar cell: Stable, light-soaking free, solution processed and efficient diketopyrrolopyrrole based small molecule inverted organic solar cells. Sol. Energy Mater. Sol. Cells 2016, 150, 19–31. [Google Scholar] [CrossRef]
- Jørgensen, M.; Norrman, K.; Gevorgyan, S.A.; Tromholt, T.; Andreasen, B.; Krebs, F.C. Stability of Polymer Solar Cells. Adv. Mater. 2012, 24, 580–612. [Google Scholar] [CrossRef] [PubMed]
- Peters, C.H.; Sachs-Quintana, I.; Mateker, W.R.; Heumueller, T.; Rivnay, J.; Noriega, R.; Beiley, Z.M.; Hoke, E.T.; Salleo, A.; McGehee, M.D. The mechanism of burn-in loss in a high efficiency polymer solar cell. Adv. Mater. 2012, 24, 663–668. [Google Scholar] [CrossRef]
- Kong, J.; Song, S.; Yoo, M.; Lee, G.Y.; Kwon, O.; Park, J.K.; Back, H.; Kim, G.; Lee, S.H.; Suh, H. Long-term stable polymer solar cells with significantly reduced burn-in loss. Nat. Commun. 2014, 5, 5688. [Google Scholar] [CrossRef] [PubMed]
- Sharenko, A.; Kuik, M.; Toney, M.F.; Nguyen, T.Q. Crystallization-Induced Phase Separation in Solution-Processed Small Molecule Bulk Heterojunction Organic Solar Cells. Adv. Funct. Mater. 2014, 24, 3543–3550. [Google Scholar] [CrossRef]
- Sun, Y.; Welch, G.C.; Leong, W.L.; Takacs, C.J.; Bazan, G.C.; Heeger, A.J. Solution-processed small-molecule solar cells with 6.7% efficiency. Nat. Mater. 2012, 11, 44. [Google Scholar] [CrossRef] [PubMed]
- Deibel, C.; Dyakonov, V. Polymer–fullerene bulk heterojunction solar cells. Rep. Prog. Phys. 2010, 73, 96401. [Google Scholar] [CrossRef] [Green Version]
- Graham, K.R.; Mei, J.; Stalder, R.; Shim, J.W.; Cheun, H.; Steffy, F.; So, F.; Kippelen, B.; Reynolds, J.R. Polydimethylsiloxane as a macromolecular additive for enhanced performance of molecular bulk heterojunction organic solar cells. ACS Appl. Mater. Interfaces 2011, 3, 1210–1215. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Wen, W.; Mukherjee, S.; Ade, H.; Kramer, E.J.; Bazan, G.C. High-Molecular-Weight Insulating Polymers Can Improve the Performance of Molecular Solar Cells. Adv. Mater. 2014, 26, 4168–4172. [Google Scholar] [CrossRef]
- Nguyen, T.L.; Choi, H.; Ko, S.J.; Uddin, M.A.; Walker, B.; Yum, S.; Jeong, J.E.; Yun, M.H.; Shin, T.J.; Hwang, S.; et al. Semi-crystalline photovoltaic polymers with efficiency exceeding 9% in a ∼300 nm thick conventional single-cell device. Energy Environ. Sci. 2014, 7, 3040–3051. [Google Scholar] [CrossRef] [Green Version]
- Lee, T.H.; Uddin, M.A.; Zhong, C.; Ko, S.-J.; Walker, B.; Kim, T.; Yoon, Y.J.; Park, S.Y.; Heeger, A.J.; Woo, H.Y.; et al. Investigation of Charge Carrier Behavior in High Performance Ternary Blend Polymer Solar Cells. Adv. Energy Mater. 2016, 6, 1600637. [Google Scholar] [CrossRef]
- Fraga Dominguez, I.; Topham, P.D.; Bussiere, P.-O.; Begue, D.; Rivaton, A. Unravelling the photodegradation mechanisms of a low bandgap polymer by combining experimental and modeling approaches. J. Phys. Chem. C 2015, 119, 2166–2176. [Google Scholar] [CrossRef]
- Constantinou, I.; Shewmon, N.T.; Lo, C.K.; Deininger, J.J.; Reynolds, J.R.; So, F. Photodegradation of Metal Oxide Interlayers in Polymer Solar Cells. Adv. Mater. Interfaces 2016, 3, 1600741. [Google Scholar] [CrossRef]
- Jao, M.-H.; Liao, H.-C.; Su, W.-F. Achieving a high fill factor for organic solar cells. J. Mater. Chem. A 2016, 4, 5784–5801. [Google Scholar] [CrossRef]
- Guerrero, A.; Loser, S.; Garcia-Belmonte, G.; Bruns, C.J.; Smith, J.; Miyauchi, H.; Stupp, S.I.; Bisquert, J.; Marks, T.J. Solution-processed small molecule: Fullerene bulk-heterojunction solar cells: Impedance spectroscopy deduced bulk and interfacial limits to fill-factors. Phys. Chem. Chem. Phys. 2013, 15, 16456–16462. [Google Scholar] [CrossRef]
- Mandoc, M.M.; Veurman, W.; Koster, L.J.A.; De Boer, B.; Blom, P.W. Origin of the reduced fill factor and photocurrent in MDMO-PPV: PCNEPV all-polymer solar cells. Adv. Funct. Mater. 2007, 17, 2167–2173. [Google Scholar] [CrossRef] [Green Version]
- Proctor, C.M.; Kim, C.; Neher, D.; Nguyen, T.Q. Nongeminate recombination and charge transport limitations in diketopyrrolopyrrole-based solution-processed small molecule solar cells. Adv. Funct. Mater. 2013, 23, 3584–3594. [Google Scholar] [CrossRef]
- Koster, L.J.A.; Kemerink, M.; Wienk, M.M.; Maturová, K.; Janssen, R.A. Quantifying bimolecular recombination losses in organic bulk heterojunction solar cells. Adv. Mater. 2011, 23, 1670–1674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, F.; Li, Z.; Wang, J.; Rao, A.; Howard, I.A.; Abrusci, A.; Massip, S.; McNeill, C.R.; Greenham, N.C. Trap-induced losses in hybrid photovoltaics. ACS Nano 2014, 8, 3213–3221. [Google Scholar] [CrossRef]
- Nalwa, K.S.; Kodali, H.K.; Ganapathysubramanian, B.; Chaudhary, S. Dependence of recombination mechanisms and strength on processing conditions in polymer solar cells. Appl. Phys. Lett. 2011, 99, 279. [Google Scholar] [CrossRef] [Green Version]
- Mandoc, M.; Kooistra, F.; Hummelen, J.; De Boer, B.; Blom, P. Effect of traps on the performance of bulk heterojunction organic solar cells. Appl. Phys. Lett. 2007, 91, 263505. [Google Scholar] [CrossRef] [Green Version]
- Credgington, D.; Hamilton, R.; Atienzar, P.; Nelson, J.; Durrant, J.R. Non-Geminate Recombination as the Primary Determinant of Open-Circuit Voltage in Polythiophene: Fullerene Blend Solar Cells: An Analysis of the Influence of Device Processing Conditions. Adv. Funct. Mater. 2011, 21, 2744–2753. [Google Scholar] [CrossRef]
- Maturová, K.; Van Bavel, S.S.; Wienk, M.M.; Janssen, R.A.; Kemerink, M. Description of the morphology dependent charge transport and performance of polymer: Fullerene bulk heterojunction solar cells. Adv. Funct. Mater. 2011, 21, 261–269. [Google Scholar] [CrossRef]
- Maurano, A.; Hamilton, R.; Shuttle, C.G.; Ballantyne, A.M.; Nelson, J.; O’regan, B.; Zhang, W.; McCulloch, I.; Azimi, H.; Morana, M. Recombination dynamics as a key determinant of open circuit voltage in organic bulk heterojunction solar cells: A comparison of four different donor polymers. Adv. Mater. 2010, 22, 4987–4992. [Google Scholar] [CrossRef] [Green Version]
- Pal, S.K.; Kesti, T.; Maiti, M.; Zhang, F.; Inganas, O.; Hellstrom, S.; Andersson, M.R.; Oswald, F.; Langa, F.; Osterman, T. Geminate charge recombination in polymer/fullerene bulk heterojunction films and implications for solar cell function. J. Am. Chem. Soc. 2010, 132, 12440–12451. [Google Scholar] [CrossRef]
- Credgington, D.; Durrant, J.R. Insights from transient optoelectronic analyses on the open-circuit voltage of organic solar cells. J. Phys. Chem. Lett. 2012, 3, 1465–1478. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Belmonte, G.; Bisquert, J. Open-circuit voltage limit caused by recombination through tail states in bulk heterojunction polymer-fullerene solar cells. Appl. Phys. Lett. 2010, 96, 48. [Google Scholar] [CrossRef]
Device | VOC (V) | JSC (mA·cm−2 ) | FF | Best Eff. (%) | Avg. Eff. (%) | Rs (Ω) | Rsh (Ω) |
---|---|---|---|---|---|---|---|
Binary | 0.75 | 11.64 | 0.59 | 5.17 | 4.85 | 11.07 | 1428 |
Binary (L) * | 0.31 | 10.46 | 0.27 | 0.87 | 0.50 | 13.91 | 187 |
Ternary-F | 0.80 | 12.17 | 0.63 | 6.09 | 5.94 | 19.82 | 94,426 |
Ternary-F (L) | 0.79 | 10.23 | 0.48 | 3.84 | 3.77 | 18.56 | 5968 |
Ternary-CN | 0.84 | 11.65 | 0.54 | 5.29 | 4.95 | 23.67 | 3372 |
Ternary-CN (L) | 0.49 | 9.89 | 0.34 | 1.61 | 1.33 | 19.17 | 1089 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Koh, C.W.; Uddin, M.A.; Ryu, K.Y.; Jang, S.-R.; Woo, H.Y.; Lim, B.; Kim, K. Improving the Photostability of Small-Molecule-Based Organic Photovoltaics by Providing a Charge Percolation Pathway of Crystalline Conjugated Polymer. Polymers 2020, 12, 2598. https://doi.org/10.3390/polym12112598
Kim J, Koh CW, Uddin MA, Ryu KY, Jang S-R, Woo HY, Lim B, Kim K. Improving the Photostability of Small-Molecule-Based Organic Photovoltaics by Providing a Charge Percolation Pathway of Crystalline Conjugated Polymer. Polymers. 2020; 12(11):2598. https://doi.org/10.3390/polym12112598
Chicago/Turabian StyleKim, Jihee, Chang Woo Koh, Mohammad Afsar Uddin, Ka Yeon Ryu, Song-Rim Jang, Han Young Woo, Bogyu Lim, and Kyungkon Kim. 2020. "Improving the Photostability of Small-Molecule-Based Organic Photovoltaics by Providing a Charge Percolation Pathway of Crystalline Conjugated Polymer" Polymers 12, no. 11: 2598. https://doi.org/10.3390/polym12112598
APA StyleKim, J., Koh, C. W., Uddin, M. A., Ryu, K. Y., Jang, S.-R., Woo, H. Y., Lim, B., & Kim, K. (2020). Improving the Photostability of Small-Molecule-Based Organic Photovoltaics by Providing a Charge Percolation Pathway of Crystalline Conjugated Polymer. Polymers, 12(11), 2598. https://doi.org/10.3390/polym12112598