Tensile and Bending Strength Improvements in PEEK Parts Using Fused Deposition Modelling 3D Printing Considering Multi-Factor Coupling
Abstract
:1. Introduction
2. Experimental Methods
2.1. Equipment and Materials
2.2. Tensile Test
2.3. Bending Test
2.4. Differential Scanning Calorimetry (DSC)
2.5. X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM)
3. Results and Discussion
3.1. Tensile Strength
3.2. Bending Strength
3.3. Crystallinity
3.4. Crystallinity
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ma, J.Z.; Liu, T.; Mao, D.H.; Bin Li, J.; Wang, H.Z. Research on Microstructure Distribution of Aluminum Profiles with Different Wall Thickness Sections. Adv. Mater. Res. 2011, 242, 2019–2024. [Google Scholar] [CrossRef]
- Rahim, T.N.A.T.; Abdullah, A.M.; Akil, H.M. Recent developments in fused deposition modeling-based 3d printing of polymers and their composites. Polym. Rev. 2019, 59, 589–624. [Google Scholar] [CrossRef]
- Long, J.; Gholizadeh, H.; Lu, J.; Bunt, C.; Seyfoddin, A. Application of Fused Deposition Modelling (FDM) Method of 3D Printing in Drug Delivery. Curr. Pharm. Des. 2017, 23, 433–439. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Wang, G.; Cheng, T.; Liu, Y. Review of space manufacturing technique and developments. Sci. Sin. Phys. Mech. Astron. 2020, 50, 047006. [Google Scholar] [CrossRef]
- Zadpoor, A.A.; Malda, J. Additive manufacturing of biomaterials, tissues, and organs. Ann. Biomed. Eng. 2016, 45, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Balashov, V.; Khartov, S.; Mogulkin, A.; Nigmatzyanov, V.; Peysakhovich, O.; Rabinsky, L.; Sitnikov, S. Advanced ceramic materials and 3d printing technologies in application to the electrically powered spacecraft propulsion. In first Iaa/Aas scitech forum on space flight mechanics and space structures and materials. Adv. Astronaut. Sci. 2020, 170, 847–857. [Google Scholar]
- Guo, N.; Leu, M.C. Addanditive manufacturing: Technology, applications and research needs. Front. Mech. Eng. 2013, 8, 215–243. [Google Scholar] [CrossRef]
- Derakhshanfar, S.; Mbeleck, R.; Xu, K.; Zhang, X.; Zhong, W.; Xing, M. 3D bioprinting for biomedical devices and tissue engineering: A review of recent trends and advances. Bioact. Mater. 2018, 3, 144–156. [Google Scholar] [CrossRef]
- Liang, S.; Zhang, G.; Hou, Z.; Wang, W.; Wang, J.; Li, J.; Gu, X.; Han, Z. Analysis and experimental study on the influence of FDM process parameters on the surface quality of parts. Manuf. Technol. Mach. Tool 2017, 11, 110–114. [Google Scholar]
- Chacón, J.; Caminero, M.; García-Plaza, E.; Núñez, P. Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection. Mater. Des. 2017, 124, 143–157. [Google Scholar] [CrossRef]
- Durgun, I.; Ertan, R. Experimental investigation of FDM process for improvement of mechanical properties and production cost. Rapid Prototyp. J. 2014, 20, 228–235. [Google Scholar] [CrossRef]
- Sood, A.K.; Ohdar, R.; Mahapatra, S. Parametric appraisal of mechanical property of fused deposition modelling processed parts. Mater. Des. 2010, 31, 287–295. [Google Scholar] [CrossRef]
- Wu, W.; Jiang, J.; Jiang, H.; Liu, W.; Li, G.; Wang, B.; Tang, M.; Zhao, J. Improving bending and dynamic mechanics performance of 3D printing through ultrasonic strengthening. Mater. Lett. 2018, 220, 317–320. [Google Scholar] [CrossRef]
- Lay, M.; Thajudin, N.L.N.; Hamid, Z.A.A.; Rusli, A.; Abdullah, M.K.; Shuib, R.K. Comparison of physical and mechanical properties of PLA, ABS and nylon 6 fabricated using fused deposition modeling and injection molding. Compos. Part B Eng. 2019, 176, 107341. [Google Scholar] [CrossRef]
- Heidari-Rarani, M.; Rafiee-Afarani, M.; Zahedi, A. Mechanical characterization of FDM 3D printing of continuous carbon fiber reinforced PLA composites. Compos. Part B Eng. 2019, 175, 107147. [Google Scholar] [CrossRef]
- Li, Y.; Gao, S.; Dong, R.; Ding, X.; Duan, X. Additive Manufacturing of PLA and CF/PLA Binding Layer Specimens via Fused Deposition Modeling. J. Mater. Eng. Perform. 2018, 27, 492–500. [Google Scholar] [CrossRef]
- Mohamed, O.A.; Masood, S.H.; Bhowmik, J.L.; Somers, A.E. Investigation on the tribological behavior and wear mechanism of parts processed by fused deposition additive manufacturing process. J. Manuf. Process. 2017, 29, 149–159. [Google Scholar] [CrossRef]
- Najeeb, S.; Zafar, M.S.; Khurshid, Z.; Siddiqui, F. Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics. J. Prosthodont. Res. 2016, 60, 12–19. [Google Scholar] [CrossRef]
- Panayotov, I.V.; Orti, V.; Cuisinier, F. Polyetheretherketone (PEEK) for medical applications. J. Mater. Sci. Mater. Med. 2016, 27, 118. [Google Scholar] [CrossRef]
- Bathala, L.; Majeti, V.; Rachuri, N.; Singh, N.; Gedela, S. The role of polyether ether ketone (peek) in dentistry—A review. J. Med. Life 2019, 12, 5–9. [Google Scholar] [CrossRef]
- Zorko, D.; Kulovec, S.; Duhovnik, J.; Tavčar, J. Durability and design parameters of a Steel/PEEK gear pair. Mech. Mach. Theory 2019, 140, 825–846. [Google Scholar] [CrossRef]
- Zhang, H.; Fang, L.; Chen, Q.; Huo, S.; Yao, R. Application of PEEK in aerospace industry. New Technol. New Process 2018, 10, 5–8. [Google Scholar]
- Zhu, J.; Liu, G.; Chen, G. Application analysis of high-performance thermoplastic composites in rotorcraft special structures. In Proceedings of the Fourth China Aviation Science and Technology Conference, Shenyang, China, 15–16 August 2019; pp. 118–128. [Google Scholar]
- Liu, Y. Research on Automatic Generation Technology of 3D Printing Support based on FDM. Master’s Thesis, Qingdao University of Science and Technology, Shandong, China, 2018. [Google Scholar]
- Li, F.; Pan, Y.; Zeng, S.; Chen, P. The support structure study of the extrusion 3D printing. Manuf. Technol. Mach. Tool 2017, 6, 64–68. [Google Scholar]
- Deng, X.; Zeng, Z.; Peng, B.; Yan, S.; Ke, W. Mechanical properties optimization of poly-ether-ether-ketone via fused deposition modeling. Materials 2018, 11, 216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arif, M.; Kumar, S.; Varadarajan, K.; Cantwell, W. Performance of biocompatible PEEK processed by fused deposition additive manufacturing. Mater. Des. 2018, 146, 249–259. [Google Scholar] [CrossRef]
- Li, Q.; Zhao, W.; Yang, W.; Wang, G. Flexural properties and fracture behavior of cf/peek in orthogonal building orientation by FDM: Microstructure and mechanism. Polymers 2019, 11, 656. [Google Scholar] [CrossRef] [Green Version]
- Tan, L.; Liu, Y.; Chen, R.; He, J.; Wang, L.; Lian, Q.; Li, D.; Xu, G. Multi-Point flexible molding for personalized peek skull repair. J. Xi’an Jiaotong Univ. 2016, 50, 130–136. [Google Scholar]
- Zong, X.; Ruan, J.; Liu, H.; Sun, W.; Liu, Y. Rapid injection moulding process of polyether ether ketone based on stereolithography. SN Appl. Sci. 2019, 1, 1388. [Google Scholar] [CrossRef] [Green Version]
- McLauchlin, A.; Ghita, O.R.; Savage, L. Studies on the reprocessability of poly(ether ether ketone) (PEEK). J. Mater. Process. Technol. 2014, 214, 75–80. [Google Scholar] [CrossRef] [Green Version]
- Chivers, R.; Moore, D.R. The effect of molecular weight and crystallinity on the mechanical properties of injection moulded poly(aryl-ether-ether-ketone) resin. Polymer 1994, 35, 110–116. [Google Scholar] [CrossRef]
- Vaezi, M.; Yang, S. Extrusion-based additive manufacturing of PEEK for biomedical applications. Virtual Phys. Prototyp. 2015, 10, 123–135. [Google Scholar] [CrossRef]
- Cicala, G.; Latteri, A.; Del Curto, B.; Russo, A.L.; Recca, G.; Farè, S. Engineering thermoplastics for additive manufacturing: A critical perspective with experimental evidence to support functional applications. J. Appl. Biomater. Funct. Mater. 2017, 15, 10–18. [Google Scholar] [CrossRef] [Green Version]
- Hoskins, T.; Dearn, K.D.; Kukureka, S. Mechanical performance of PEEK produced by additive manufacturing. Polym. Test. 2018, 70, 511–519. [Google Scholar] [CrossRef]
- Wu, W.; Geng, P.; Li, G.; Zhao, D.; Zhang, H.; Zhao, J. Influence of layer thickness and raster angle on the mechanical properties of 3D-Printed PEEK and a comparative mechanical study between PEEK and ABS. Materials 2015, 8, 5834–5846. [Google Scholar] [CrossRef] [PubMed]
- Khakyasheva, E.V.; Shabaev, A.; Khashirova, S.; Shetov, R.; Aloev, V. The effect of PEEK drying modes on thermal stability. Key Eng. Mater. 2019, 816, 67–71. [Google Scholar] [CrossRef]
- Suteja, T.J.; Soesanti, A. Mechanical properties of 3D printed Polylactic acid product for various infill design parameters: A review. J. Phys. Conf. Ser. 2020, 1569, 042010. [Google Scholar] [CrossRef]
- Rodríguez-Panes, A.; Claver, J.; Camacho, A.M. The influence of manufacturing parameters on the mechanical behaviour of PLA and ABS pieces manufactured by FDM: A comparative analysis. Materials 2018, 11, 1333. [Google Scholar] [CrossRef] [Green Version]
- Blundell, D.; Osborn, B. The morphology of poly(aryl-ether-ether-ketone). Polymer 1983, 24, 953–958. [Google Scholar] [CrossRef]
- Wang, P.; Zou, B.; Xiao, H.; Ding, S.; Huang, C. Effects of printing parameters of fused deposition modeling on mechanical properties, surface quality, and microstructure of PEEK. J. Mater. Process. Technol. 2019, 271, 62–74. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, K.; Li, Y.; Chen, F. Mechanical characterization of biocompatible PEEK by FDM. J. Manuf. Process. 2020, 56, 28–42. [Google Scholar] [CrossRef]
- Wang, Z.; Li, J.; Zhang, J.; Qi, J. Research on the Space application of fused deposition modeling. Aerosp. Mater. Technol. 2020, 50, 90–93. [Google Scholar]
- Rinaldi, M.; Ghidini, T.; Cecchini, F.; Brandao, A.; Nanni, F. Additive layer manufacturing of poly (ether ether ketone) via FDM. Compos. Part B Eng. 2018, 145, 162–172. [Google Scholar] [CrossRef]
Level | Factor | |||
---|---|---|---|---|
Layer Thickness (mm) A | Printing Temperature (°C) B | Printing Direction C | Printing Path (°) D | |
1 | 0.1 | 445 | horizontal | 45 |
2 | 0.2 | 485 | vertical | 90 |
3 | 0.3 | 525 | - | 180 |
No. | Factor | |||
---|---|---|---|---|
A | B | C | D | |
1 | 0.1 | 445 | H | 45 |
2 | 0.1 | 485 | V | 90 |
3 | 0.1 | 525 | H | 180 |
4 | 0.2 | 445 | V | 180 |
5 | 0.2 | 485 | H | 45 |
6 | 0.2 | 525 | H | 90 |
7 | 0.3 | 445 | H | 90 |
8 | 0.3 | 485 | H | 180 |
9 | 0.3 | 525 | V | 45 |
Range | A | B | C | D |
---|---|---|---|---|
K1j | 224.3 | 171.7 | 398.6 | 203.1 |
K2j | 169.9 | 186 | 147.1 | 153.9 |
K3j | 151.5 | 188 | - | 188.7 |
k1j | 74.77 | 57.23 | 66.43 | 67.7 |
k2j | 56.63 | 62 | 49.03 | 51.3 |
k3j | 50.5 | 62.67 | - | 62.9 |
R | 24.27 | 5.44 | 17.4 | 16.4 |
Order of priority | A C D B |
Range | A | B | C | D |
---|---|---|---|---|
K1j | 339 | 285.6 | 589.5 | 390 |
K2j | 309.6 | 373.5 | 423.9 | 277.8 |
K3j | 304.8 | 354.3 | - | 345.6 |
k1j | 113 | 95.2 | 98.25 | 130 |
k2j | 103.2 | 124.5 | 141.3 | 92.6 |
k3j | 101.6 | 118.1 | - | 115.2 |
R | 11.4 | 29.3 | 43.05 | 37.4 |
Order of priority | C D B A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Lou, Y. Tensile and Bending Strength Improvements in PEEK Parts Using Fused Deposition Modelling 3D Printing Considering Multi-Factor Coupling. Polymers 2020, 12, 2497. https://doi.org/10.3390/polym12112497
Li Y, Lou Y. Tensile and Bending Strength Improvements in PEEK Parts Using Fused Deposition Modelling 3D Printing Considering Multi-Factor Coupling. Polymers. 2020; 12(11):2497. https://doi.org/10.3390/polym12112497
Chicago/Turabian StyleLi, Yao, and Yan Lou. 2020. "Tensile and Bending Strength Improvements in PEEK Parts Using Fused Deposition Modelling 3D Printing Considering Multi-Factor Coupling" Polymers 12, no. 11: 2497. https://doi.org/10.3390/polym12112497
APA StyleLi, Y., & Lou, Y. (2020). Tensile and Bending Strength Improvements in PEEK Parts Using Fused Deposition Modelling 3D Printing Considering Multi-Factor Coupling. Polymers, 12(11), 2497. https://doi.org/10.3390/polym12112497