Structural and Thermal Properties of Ethylene-Norbornene Copolymers Obtained Using Vanadium Homogeneous and SIL Catalysts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Compounds
2.2. Characterization Techniques
3. Results
3.1. Copolymers Composition
3.2. Unsaturation Group Study of E-NB Copolymers
3.3. Thermal Properties of Copolymers
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Leone, G.; Pierro, I.; Zanchin, G.; Forni, A.; Bertini, F.; Rapallo, A.; Ricci, G. Vanadium(III)–catalyzed copolymerization of ethylene with norbornene: Microstructure at tetrad level and reactivity ratios. J. Mol. Catal. A Chem. 2016, 424, 220–231. [Google Scholar] [CrossRef]
- Tritto, I.; Boggioni, L.; Scalcione, G.; Sidari, D.; Galotto, N.G. Novel norbornene copolymers with transition metal catalysts. J. Organomet. Chem. 2015, 798, 367–374. [Google Scholar] [CrossRef]
- Add a Layer of COC to Boost Polyolefin Film Properties. Available online: https://www.ptonline.com/articles/add-a-layer-of-coc-to-boost-polyolefin-film-properties (accessed on 25 October 2011).
- Advanced Resins for Your Leading Products. Available online: https://topas.com/products/topas-coc-polymers (accessed on 4 May 2020).
- Cyclo Olefin Copolymer (COC). Available online: https://us.mitsuichemicals.com/service/product/apel.htm (accessed on 13 August 2020).
- Boggioni, L.; Sidari, D.; Losio, S.; Stehling, U.M.; Auriemma, F.; Di Girolamo, R.; De Rosa, C.; Tritto, I. Ethylene–co–norbornene copolymerization in the presence of a chain transfer agent. Eur. Polym. J. 2018, 107, 54–66. [Google Scholar] [CrossRef]
- Li, X.; Hou, Z. Organometallic catalysts for copolymerization of cyclic olefins. Coord. Chem. Rev. 2008, 252, 1842–1869. [Google Scholar] [CrossRef]
- Wang, B.; Long, Y.-Y.; Li, Y.-G.; Men, Y.-F.; Li, Y.-S. Cyclic olefin copolymers of propylene with asymmetric Si-containing α,ω-diolefins: The tailored thermal and mechanical properties. Polymer 2015, 61, 108–114. [Google Scholar] [CrossRef]
- Kaminsky, W. Polymerization catalysis. Catal. Today 2000, 62, 23–34. [Google Scholar] [CrossRef]
- Kaminsky, W.; Arndt, M. Metallocenes for Polymer Catalysis, Polymer Synthesis/Polymer Catalysis; Springer: Berlin/Heidelberg, Germany, 1997; pp. 143–187. [Google Scholar]
- Boggioni, L.; Sidari, D.; Losio, S.; Stehling, U.M.; Auriemma, F.; Malafronte, A.; Di Girolamo, R.; De Rosa, C.; Tritto, I. Ethylene-co-norbornene Copolymerization Using a Dual Catalyst System in the Presence of a Chain Transfer Agent. Polymers 2019, 11, 554. [Google Scholar] [CrossRef] [Green Version]
- Boggioni, L.; Tritto, I. State of the art of cyclic olefin polymers. MRS Bull. 2013, 38, 245–251. [Google Scholar] [CrossRef]
- Frensdorff, H.K.; Pariser, R. Copolymerization as a Markov Chain. J. Chem. Phys. 1963, 39, 2303. [Google Scholar] [CrossRef]
- Budagumpi, S.; Keri, R.S.; Biffis, A.; Patil, S.A. Olefin poly/oligomerizations by metal precatalysts bearing non–heterocyclic N–donor ligands. Appl. Catal. A Gen. 2017, 535, 32–60. [Google Scholar] [CrossRef]
- Szeluga, U.; Moryc, P. Viscoelastic properties and morphology of dicyanate ester/epoxy co-polymers modified with polysiloxane and butadiene-acrylonitrile rubbers. J. Therm. Anal. Calorim. 2013, 114, 137–146. [Google Scholar] [CrossRef] [Green Version]
- Kolosov, N.A.; Tuskaev, V.A.; Gagieva, S.C.; Fedyanin, I.V.; Khrustalev, V.N.; Polyakova, O.V.; Bulychev, B.M. Vanadium (V) and titanium (IV) compounds with 2-[hydroxy(diaryl)methyl]-8-hydroxyquinolines: Synthesis, structure and catalytic behaviors to olefin polymerization. Eur. Polym. J. 2017, 87, 266–276. [Google Scholar] [CrossRef]
- Redshaw, C.; Walton, M.J.; Elsegood, M.R.J.; Prior, T.J.; Michiue, K. Vanadium(v) tetra-phenolate complexes: Synthesis, structural studies and ethylene homo-(co-)polymerization capability. RSC Adv. 2015, 5, 89783–89796. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.-B.; Lu, L.-P.; Liu, J.-Y.; Li, Y.-S. [ONN]-type amine pyridine(s) phenolate-based oxovanadium(v) catalysts for ethylene homo- and copolymerization. Dalton Trans. 2014, 43, 12926–12934. [Google Scholar] [CrossRef] [PubMed]
- Nomura, K.; Zhang, S. Design of Vanadium Complex Catalysts for Precise Olefin Polymerization. Chem. Rev. 2011, 111, 2342–2362. [Google Scholar] [CrossRef] [PubMed]
- Hagen, H.; Boersma, J.; van Koten, G. Homogeneous vanadium-based catalysts for the Ziegler–Natta polymerization of α-olefins. Chem. Soc. Rev. 2002, 31, 357–364. [Google Scholar] [CrossRef] [Green Version]
- Ochędzan-Siodłak, W.; Bihun, A. Copolymerization of ethylene with norbornene or 1-octene using supported ionic liquid systems. Polym. Bull. 2017, 74, 2799–2817. [Google Scholar] [CrossRef] [Green Version]
- Elagab, H.A.; Alt, H.G. Ti, Zr and V complexes with N-allyl functionalized heterocyclic ligands as catalysts for ethylene polymerization. Polyhedron 2016, 115, 17–29. [Google Scholar] [CrossRef]
- Zanchin, G.; Gavezzoli, A.; Bertini, F.; Ricci, G.; Leone, G. Homo- and Copolymerization of Ethylene with Norbornene Catalyzed by Vanadium(III) Phosphine Complexes. Molecules 2019, 24, 2088. [Google Scholar] [CrossRef] [Green Version]
- Zanchin, G.; Vendier, L.; Pierro, I.; Bertini, F.; Ricci, G.; Lorber, C.; Leone, G. Homo- and Co-Polymerization of Ethylene with Cyclic Olefins Catalyzed by Phosphine Adducts of (Imido)vanadium(IV) Complexes. Organometallics 2018, 37, 3181–3195. [Google Scholar] [CrossRef]
- Zanchin, G.; Pierro, I.; Parisini, E.; Martí-Rujas, J.; Ricci, G.; Leone, G. Synthesis, structure and behavior of vanadium(III) diphosphine complexes in the homo- and co-polymerization of ethylene with norbornene: The ligand donor strength and bite angle make the difference. J. Organomet. Chem. 2018, 861, 142–150. [Google Scholar] [CrossRef]
- Ochędzan-Siodłak, W.; Bihun-Kisiel, A.; Siodłak, D.; Poliwoda, A.; Dziuk, B. Titanium and vanadium catalysts with oxazoline ligands for ethylene-norbornene (co)polymerization. Eur. Polym. J. 2018, 106, 148–155. [Google Scholar] [CrossRef]
- Wang, H.; Cheng, H.; Tanaka, R.; Shiono, T.; Cai, Z. Efficient control of ethylene–norbornene copolymerization behavior of a fluorenylamido-ligated titanium complex: Substituent effects of the amido ligand and copolymer properties. Polym. Chem. 2018, 9, 4492–4497. [Google Scholar] [CrossRef]
- Wu, J.-Q.; Li, Y.-S. Well-defined vanadium complexes as the catalysts for olefin polymerization. Coord. Chem. Rev. 2011, 255, 2303–2314. [Google Scholar] [CrossRef]
- Langeslay, R.R.; Kaphan, D.M.; Marshall, C.L.; Stair, P.C.; Sattelberger, A.P.; Delferro, M. Catalytic Applications of Vanadium: A Mechanistic Perspective. Chem. Rev. 2019, 119, 2128–2191. [Google Scholar] [CrossRef]
- Diteepeng, N.; Tang, X.; Hou, X.; Li, Y.-S.; Phomphrai, K.; Nomura, K. Ethylene polymerisation and ethylene/norbornene copolymerisation by using aryloxo-modified vanadium(v) complexes containing 2,6-difluoro-, dichloro-phenylimido complexes. Dalton Trans. 2015, 44, 12273–12281. [Google Scholar] [CrossRef]
- Liu, Y.; Xiang, H.-X.; Wang, K.-T.; Wu, G.; Li, Y.-B. Efficient Preparation of Cyclic Olefin Copolymers with Unreacted Double Bonds by Using Thermal Stable Non-Metallocene Vanadium Catalytic System. Macromol. Chem. Phys. 2019, 220, 1900008. [Google Scholar] [CrossRef]
- Wang, W.; Nomura, K. Notable Effects of Aluminum Alkyls and Solvents for Highly Efficient Ethylene (Co)polymerizations Catalyzed by (Arylimido)- (aryloxo)vanadium Complexes. Adv. Synth. Catal. 2006, 348, 743–750. [Google Scholar] [CrossRef]
- Wu, J.-Q.; Mu, J.-S.; Zhang, S.-W.; Li, Y.-S. Vanadium(V) complexes containing tetradentate amine trihydroxy ligands as catalysts for copolymerization of cyclic olefins. J. Polym. Sci. Part A Polym. Chem. 2010, 48, 1122–1132. [Google Scholar] [CrossRef]
- Desimoni, G.; Faita, G.; Jørgensen, K.A. C2-Symmetric Chiral Bis(Oxazoline) Ligands in Asymmetric Catalysis. Chem. Rev. 2006, 106, 3561–3651. [Google Scholar] [CrossRef]
- Phillips, A.M.F.; Suo, H.; Guedes da Silva, M.d.F.C.; Pombeiro, A.J.L.; Sun, W.-H. Recent developments in vanadium-catalyzed olefin coordination polymerization. Coord. Chem. Rev. 2020, 416, 213332. [Google Scholar] [CrossRef]
- Ben Zid, T.; Fadhli, M.; Khedher, I.; Fraile, J.M. New bis(oxazoline)–vanadyl complexes, supported by electrostatic interaction in Laponite clay, as heterogeneous catalysts for asymmetric oxidation of methyl phenyl sulfide. Microporous Mesoporous Mater. 2017, 239, 167–172. [Google Scholar] [CrossRef] [Green Version]
- Javadi, M.M.; Moghadam, M.; Mohammadpoor-Baltork, I.; Tangestaninejad, S.; Mirkhani, V. Epoxidation of alkenes and oxidation of sulfides catalyzed by a new binuclear vanadium bis-oxazoline complex. J. Iran. Chem. Soc. 2015, 12, 477–485. [Google Scholar] [CrossRef]
- Pastor, I.M.; Adolfsson, H. Novel highly modular C2-symmetric oxazoline ligands—Application in titanium-catalyzed diethylzinc additions to aldehydes. Tetrahedron Lett. 2002, 43, 1743–1746. [Google Scholar] [CrossRef]
- Tanaka, S.; Tada, M.; Iwasawa, Y. Enantioselectivity promotion by achiral surface functionalization on SiO2-supported Cu-bis(oxazoline) catalysts for asymmetric Diels–Alder reactions. J. Catal. 2007, 245, 173–183. [Google Scholar] [CrossRef]
- Kandasamy, K.; Singh, H.B.; Butcher, R.J.; Jasinski, J.P. Synthesis, Structure and Catalytic Properties of VIV, MnIII, MoVI and UVI Complexes Containing Bidentate (N, O) Oxazine and Oxazoline Ligands. Inorg. Chem. 2004, 43, 5704–5713. [Google Scholar] [CrossRef] [PubMed]
- Bagherzadeh, M.; Esmailpour, P.; Abbasi, A.; Akbari, A.; Amini, M. Synthesis, crystal structure and catalytic activity of an oxo-diperoxo tungsten(VI) complex containing an oxazine ligand for selective oxidation of sulfides. J. Coord. Chem. 2018, 71, 3405–3414. [Google Scholar] [CrossRef]
- Selvam, T.; Machoke, A.; Schwieger, W. Supported ionic liquids on non-porous and porous inorganic materials—A topical review. Appl. Catal. A Gen. 2012, 445–446, 92–101. [Google Scholar] [CrossRef]
- Van Doorslaer, C.; Wahlen, J.; Mertens, P.; Binnemans, K.; De Vos, D. Immobilization of molecular catalysts in supported ionic liquid phases. Dalton Trans. 2010, 39, 8377–8390. [Google Scholar] [CrossRef] [Green Version]
- Ochędzan-Siodłak, W.; Dziubek, K. Metallocenes and post-metallocenes immobilized on ionic liquid-modified silica as catalysts for polymerization of ethylene. Appl. Catal. A Gen. 2014, 484, 134–141. [Google Scholar] [CrossRef]
- Ochędzan-Siodłak, W.; Bihun, A. Direct synthesis of fibrous high molecular weight polyethylene using vanadium catalysts supported on an SiO2 ionic liquid system. Polym. Int. 2015, 64, 1600–1606. [Google Scholar] [CrossRef]
- Ochędzan-Siodłak, W.; Bihun, A.; Olszowy, A.; Rajfur, M.; Jesionowski, T.; Siwińska-Stefańska, K. Ethylene polymerization using vanadium catalyst supported on silica modified by pyridinium ionic liquid. Polym. Int. 2016, 65, 1089–1097. [Google Scholar] [CrossRef]
- Tritto, I.; Boggioni, L.; Ferro, D.R. Metallocene catalyzed ethene- and propene co-norbornene polymerization: Mechanisms from a detailed microstructural analysis. Coord. Chem. Rev. 2006, 250, 212–241. [Google Scholar] [CrossRef]
- Białek, M.; Czaja, K.; Sacher-Majewska, B. Studies of structural composition distribution heterogeneity in ethylene/1-hexene copolymers using thermal fractionation technique (SSA): Effect of catalyst structure. Thermochim. Acta 2005, 429, 149–154. [Google Scholar] [CrossRef]
- Hosoda, S. Structural distribution of linear low-density polyethylenes. Polym. J. 1988, 20, 383–397. [Google Scholar] [CrossRef] [Green Version]
- Fineman, M.; Ross, S.D. Linear method for determining monomer reactivity ratios in copolymerization. J. Polym. Sci. 1950, 5, 259–262. [Google Scholar] [CrossRef]
- Tritto, I.; Boggioni, L.; Jansen, J.C.; Thorshaug, K.S.; Maria, C.; Ferro, D.R. Ethylene−norbornene copolymers from metallocene-based catalysts: Microstructure at tetrad level and reactivity ratios. Macromolecules 2002, 35, 616–623. [Google Scholar] [CrossRef]
- Hsieh, E.T.; Randall, J.C. Monomer sequence distributions in ethylene-1-hexene copolymers. Macromolecules 1982, 15, 1402–1406. [Google Scholar] [CrossRef]
- Busico, V.; Cipullo, R.; Friederichs, N.; Linssen, H.; Segre, A.; Van Axel Castelli, V.; van der Velden, G. H NMR analysis of chain unsaturations in ethene/1-octene copolymers prepared with metallocene catalysts at high temperature. Macromolecules 2005, 38, 6988–6996. [Google Scholar] [CrossRef]
- Kokko, E.; Pietikäinen, P.; Koivunen, J.; Seppälä, J.V. Long-chain-branched polyethene by the copolymerization of ethene and nonconjugated α,ω-dienes. J. Polym. Sci. Part A Polym. Chem. 2001, 39, 3805–3817. [Google Scholar] [CrossRef]
- Ochędzan-Siodłak, W.; Dziubek, K.; Czaja, K. Effect of immobilization of titanocene catalyst in aralkyl imidazolium chloroaluminate media on performance of biphasic ethylene polymerization and polyethylene properties. Polym. Bull. 2013, 70, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Müller, A.J.; Michell, R.M.; Pérez, R.A.; Lorenzo, A.T. Successive self-nucleation and annealing (SSA): Correct design of thermal protocol and applications. Eur. Polym. J. 2015, 65, 132–154. [Google Scholar] [CrossRef]
Item | Catalyst | NB Feed [mol/dm3] | CNB [mol%] | Mw × 10−3 [g/mol] | Mw/Mn | re | le | MD |
---|---|---|---|---|---|---|---|---|
1 | C1 | 0.5 | 12.3 | 260 | 1.6 | 8.6 | 8.1 | 87.7 |
2 | 1.0 | 22.1 | 200 | 1.8 | 4.5 | 77.9 | ||
3 | 1.5 | 27.5 | 180 | 1.9 | 3.6 | 72.5 | ||
4 | C2 | 0.5 | 17.1 | 160 | 1.7 | 12.2 | 5.8 | 82.9 |
5 | 1.0 | 20.7 | 130 | 1.9 | 4.8 | 79.3 | ||
6 | 1.5 | 27.2 | 90 | 2.2 | 3.7 | 72.8 | ||
7 | C3 | 0.5 | 19.4 | 190 | 1.7 | 10.8 | 5.2 | 80.6 |
8 | 1.0 | 26.5 | 170 | 1.7 | 3.8 | 73.5 | ||
9 | 1.5 | 30.1 | 160 | 1.9 | 3.3 | 69.9 | ||
10 | C4 | 0.5 | 15.5 | 679 | 1.9 | 7.2 | 6.5 | 84.5 |
11 | 1.0 | 23.0 | 420 | 1.9 | 4.3 | 77.0 | ||
12 | 1.5 | 31.8 | 187 | 2.0 | 3.1 | 68.2 | ||
13 | SIL/C4 | 0.5 | 18.5 | 852 | 2.0 | 8.7 | 5.4 | 81.5 |
14 | 1.0 | 25.2 | 461 | 2.3 | 4.0 | 74.8 | ||
15 | 1.5 | 31.6 | 214 | 2.5 | 3.2 | 68.4 | ||
16 | C5 | 0.5 | 14.4 | 679 | 1.9 | 7.9 | 6.9 | 85.6 |
17 | 1.0 | 21.9 | 420 | 1.9 | 4.6 | 78.1 | ||
18 | 1.5 | 30.0 | 178 | 2.0 | 3.3 | 69.6 | ||
19 | SIL/C5 | 0.5 | 18.9 | 679 | 1.9 | 6.9 | 5.3 | 81.1 |
20 | 1.0 | 26.8 | 420 | 1.9 | 3.7 | 73.2 | ||
21 | 1.5 | 34.7 | 198 | 2.0 | 2.9 | 65.3 | ||
22 | C6 | 0.1 | 4.3 | 1047 | 2.5 | 6.5 | 23.3 | 95.7 |
23 | 1.0 | 23.6 | 470 | 2.9 | 4.2 | 76.4 | ||
24 | 1.5 | 32.9 | 157 | 2.0 | 3.0 | 67.1 | ||
25 | SIL/C6 | 0.1 | 5.7 | 1138 | 1.5 | 6.0 | 17.5 | 94.3 |
26 | 1.0 | 26.1 | 265 | 2.9 | 3.8 | 73.9 | ||
27 | 1.5 | 35.3 | 225 | 3.0 | 2.8 | 64.7 |
a Item | Catalyst | bCNB [mol%] | b Tetrad | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
EEEE | NEEE | NEEN | ENEE | NNEE | NENE | NNEN | ENNE | NNNE | NNNN | |||
1 | C1 | 27.5 | 0.651 | 0.068 | 0.045 | 0.110 | 0.004 | 0.107 | 0.005 | 0.007 | 0.005 | 0.000 |
6 | C2 | 27.2 | 0.738 | 0.049 | 0.029 | 0.104 | 0.000 | 0.064 | 0.015 | 0.001 | 0.000 | 0.000 |
9 | C3 | 30.1 | 0.587 | 0.073 | 0.062 | 0.117 | 0.000 | 0.126 | 0.035 | 0.000 | 0.000 | 0.000 |
12 | C4 | 31.8 | 0.651 | 0.072 | 0.059 | 0.109 | 0.003 | 0.104 | 0.000 | 0.002 | 0.000 | 0.000 |
15 | SIL/C4 | 31.6 | 0.613 | 0.074 | 0.056 | 0.093 | 0.006 | 0.130 | 0.004 | 0.012 | 0.012 | 0.000 |
18 | C5 | 30.0 | 0.669 | 0.078 | 0.062 | 0.031 | 0.007 | 0.125 | 0.011 | 0.008 | 0.009 | 0.000 |
21 | SIL/C5 | 34.7 | 0.680 | 0.084 | 0.058 | 0.014 | 0.003 | 0.133 | 0.005 | 0.003 | 0.020 | 0.000 |
24 | C6 | 32.9 | 0.666 | 0.067 | 0.040 | 0.112 | 0.002 | 0.107 | 0.000 | 0.002 | 0.004 | 0.000 |
27 | SIL/C6 | 35.3 | 0.620 | 0.071 | 0.055 | 0.110 | 0.007 | 0.120 | 0.000 | 0.009 | 0.008 | 0.000 |
Item | Catalyst | aCNB [mol%] | DI | |||
---|---|---|---|---|---|---|
F1 | F2 | F3 | F4 | |||
15 | SIL/C4 | 31.6 | 0.52 | 1.00 | 0.13 | - |
27 | SIL/C6 | 35.3 | 0.17 | 0.30 | 0.24 | 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Groch, P.; Bihun-Kisiel, A.; Piontek, A.; Ochędzan-Siodłak, W. Structural and Thermal Properties of Ethylene-Norbornene Copolymers Obtained Using Vanadium Homogeneous and SIL Catalysts. Polymers 2020, 12, 2433. https://doi.org/10.3390/polym12112433
Groch P, Bihun-Kisiel A, Piontek A, Ochędzan-Siodłak W. Structural and Thermal Properties of Ethylene-Norbornene Copolymers Obtained Using Vanadium Homogeneous and SIL Catalysts. Polymers. 2020; 12(11):2433. https://doi.org/10.3390/polym12112433
Chicago/Turabian StyleGroch, Paweł, Anna Bihun-Kisiel, Aleksandra Piontek, and Wioletta Ochędzan-Siodłak. 2020. "Structural and Thermal Properties of Ethylene-Norbornene Copolymers Obtained Using Vanadium Homogeneous and SIL Catalysts" Polymers 12, no. 11: 2433. https://doi.org/10.3390/polym12112433
APA StyleGroch, P., Bihun-Kisiel, A., Piontek, A., & Ochędzan-Siodłak, W. (2020). Structural and Thermal Properties of Ethylene-Norbornene Copolymers Obtained Using Vanadium Homogeneous and SIL Catalysts. Polymers, 12(11), 2433. https://doi.org/10.3390/polym12112433