Durable Epoxy@ZnO Coating for Improvement of Hydrophobicity and Color Stability of Wood
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. ZnO Micro/Nanoparticles Preparation and Hydrophobic Modification
2.3. Superhydrophobic Coating Preparation
2.4. UV Irradiation Test
2.5. Mechanical Resistance Test
2.6. Characterization Methods
3. Results and Discussion
3.1. Microstructure Morphology, Chemical Composition and Crystal Structures of the Coating
3.1.1. Microstructure Morphology
3.1.2. Chemical Composition
3.1.3. Crystal Structures
3.2. Hydrophobicity of the Coating
3.3. Color Stability during UV Irradiation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Khalil, H.A.; Awang, K.B.; Bakare, I.O.; Issam, A.M. Effect of weathering on physical, mechanical and morphological properties of chemically modified wood materials. Mater. Des. 2010, 31, 4363–4368. [Google Scholar] [CrossRef]
- Rowell, R.M. Handbook of Wood Chemistry and Wood Composites, 2nd ed.; Taylor & Francis: Abingdon, UK, 2012. [Google Scholar]
- Xue, C.H.; Yin, W.; Jia, S.T.; Ma, J.Z. UV-Durable Superhydrophobic Textiles with UV-Shielding Property by Coating Fibers with ZnO/SiO2 Core/Shell Particles. Adv. Mater. Res. 2012, 441, 351–355. [Google Scholar] [CrossRef]
- Xue, C.-H.; Yin, W.; Zhang, P.; Zhang, J.; Ji, P.-T.; Jia, S.-T. UV-durable superhydrophobic textiles with UV-shielding properties by introduction of ZnO/SiO2 core/shell nanorods on PET fibers and hydrophobization. Colloids Surf. A Physicochem. Eng. Asp. 2013, 427, 7–12. [Google Scholar] [CrossRef]
- Brassard, J.D.; Sarkar, D.K.; Perron, J.; Audibert-Hayet, A.; Melot, D. Nano-micro structured superhydrophobic zinc coating on steel for prevention of corrosion and ice adhesion. J. Colloid Interface Sci. 2015, 447, 240–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darband, G.B.; Aliofkhazraei, M.; Khorsand, S.; Sokhanvar, S.; Kaboli, A. Science and Engineering of Superhydrophobic Surfaces: Review of Corrosion Resistance, Chemical and Mechanical Stability. Arab. J. Chem. 2018. [Google Scholar] [CrossRef]
- Huang, J.Y.; Li, S.H.; Ge, M.Z.; Wang, L.N.; Xing, T.L.; Chen, G.Q.; Liu, X.F.; Al-Deyab, S.S.; Zhang, K.Q.; Chen, T.; et al. Robust superhydrophobic TiO2@fabrics for UV shielding, self-cleaning and oil–water separation. J. Mater. Chem. A 2015, 3, 2825–2832. [Google Scholar] [CrossRef]
- Dong, X.; Gao, S.; Huang, J.; Li, S.; Zhu, T.; Cheng, Y.; Zhao, Y.; Chen, Z.; Lai, Y. A self-roughened and biodegradable superhydrophobic coating with UV shielding, solar-induced self-healing and versatile oil–water separation ability. J. Mater. Chem. A 2019, 7, 2122–2128. [Google Scholar] [CrossRef]
- Wang, S.; Liu, C.; Liu, G.; Zhang, M.; Li, J.; Wang, C. Fabrication of superhydrophobic wood surface by a sol–gel process. Appl. Surf. Sci. 2011, 258, 806–810. [Google Scholar] [CrossRef]
- Sun, Q.F.; Lu, Y.; Li, J.; Cao, J. Self-Assembly of a Superhydrophobic ZnO Nanorod Arrays Film on Wood Surface Using a Hydrothermal Method. Key Eng. Mater. 2014, 609–610, 468–471. [Google Scholar] [CrossRef]
- Chu, T.V.; Chuong, P.V.; Tuong, V.M. Wettability of wood pressure-treated with TiO2 gel under hydrothermal conditions. BioResources 2014, 9, 2396–2404. [Google Scholar] [CrossRef]
- Chu, Z.; Seeger, S. Robust superhydrophobic wood obtained by spraying silicone nanoparticles. RSC Adv. 2015, 5, 21999–22004. [Google Scholar] [CrossRef]
- Lu, X.; Hu, Y. Layer-by-layer deposition of TiO2 nanoparticles in the wood surface and its superhydrophobic performance. BioResources 2016, 11, 4605–4620. [Google Scholar] [CrossRef]
- Cai, P.; Bai, N.; Xu, L.; Tan, C.; Li, Q. Fabrication of superhydrophobic wood surface with enhanced environmental adaptability through a solution-immersion process. Surf. Coat. Technol. 2015, 277, 262–269. [Google Scholar] [CrossRef]
- Wallenhorst, L.; Gurău, L.; Gellerich, A.; Militz, H.; Ohms, G.; Viöl, W. UV-blocking properties of Zn/ZnO coatings on wood deposited by cold plasma spraying at atmospheric pressure. Appl. Surf. Sci. 2018, 434, 1183–1192. [Google Scholar] [CrossRef]
- Bodîrlău, R.; Teacă, C.-A.; Roşu, D.; Roşu, L.; Varganici, C.-D.; Coroabǎ, A. Physico-chemical properties investigation of softwood surface after treatment with organic anhydride. Cent. Eur. J. Chem. 2013, 11, 2098–2106. [Google Scholar] [CrossRef] [Green Version]
- Rosu, D.; Mustata, F.; Tudorachi, N.; Musteata, V.E.; Rosu, L.; Varganici, C.D. Novel bio-based flexible epoxy resin from diglycidyl ether of bisphenol A cured with castor oil maleate. RSC Adv. 2015, 5, 45679–45687. [Google Scholar] [CrossRef]
- Rosu, D.; Mustata, F.; Tudorachi, N.; Varganici, C.D.; Rosu, L.; Musteata, V.E. A study on coating properties of an epoxy system hardened with maleinized castor oil. Prog. Org. Coat. 2016, 99, 480–489. [Google Scholar] [CrossRef]
- Rosu, D.; Bodîrlău, R.; Teacă, C.A.; Rosu, L.; Varganici, C.D. Epoxy and succinic anhydride functionalized soybean oil for wood protection against UV light action. J. Clean. Prod. 2016, 112, 1175–1183. [Google Scholar] [CrossRef]
- Rosu, L.; Varganici, C.-D.; Mustata, F.; Rusu, T.; Rosu, D.; Rosca, I.; Tudorachi, N.; Teacă, C.-A. Enhancing the Thermal and Fungal Resistance of Wood Treated with Natural and Synthetic Derived Epoxy Resins. ACS Sustain. Chem. Eng. 2018, 6, 5470–5478. [Google Scholar] [CrossRef]
- Rosu, L.; Mustata, F.; Varganici, C.D.; Rosu, D.; Rusu, T.; Rosca, I. Thermal behaviour and fungi resistance of composites based on wood and natural and synthetic epoxy resins cured with maleopimaric acid. Polym. Degrad. Stab. 2019, 160, 148–161. [Google Scholar] [CrossRef]
- Xia, Y.; Wang, J.; Chen, R.; Zhou, D.; Xiang, L. A Review on the Fabrication of Hierarchical ZnO Nanostructures for Photocatalysis Application. Crystals 2016, 6, 148. [Google Scholar] [CrossRef]
- Weichelt, F.; Emmler, R.; Flyunt, R.; Beyer, E.; Buchmeiser, M.R.; Beyer, M. ZnO-Based UV Nanocomposites for Wood Coatings in Outdoor Applications. Macromol. Mater. Eng. 2010, 295, 130–136. [Google Scholar] [CrossRef]
- Wang, Y.; Li, B.; Xu, C. Fabrication of superhydrophobic surface of hierarchical ZnO thin films by using stearic acid. Superlattices Microstruct. 2012, 51, 128–134. [Google Scholar] [CrossRef]
- Xiang, Y.; Si, Y.; Xin, Y.; Guo, Z. One-step Strategy to Prepare Utility ZnO–Stearic Acid (STA) Superhydrophobic Nanocoating. Chem. Lett. 2017, 46, 1393–1395. [Google Scholar] [CrossRef]
- Li, C.; Xie, C.; Ou, J.; Xue, M.; Wang, F.; Lei, S.; Fang, X.; Zhou, H.; Li, W. ZnO superhydrophobic coating via convenient spraying and its biofouling resistance. Surf. Interface Anal. 2018, 50, 1278–1285. [Google Scholar] [CrossRef]
- Wirunmongkol, T.; O-Charoen, N.; Pavasupree, S. Simple Hydrothermal Preparation of Zinc Oxide Powders Using Thai Autoclave Unit. Energy Procedia 2013, 34, 801–807. [Google Scholar] [CrossRef] [Green Version]
- Tuong, V.M.; Chu, T.V. Improvement of color stability of Acacia hybrid wood by TiO2 nano sol impregnation. BioResources 2015, 10, 5417–5425. [Google Scholar] [CrossRef]
- Zhang, Y.; Ge, D.; Yang, S. Spray-coating of superhydrophobic aluminum alloys with enhanced mechanical robustness. J. Colloid Interface Sci. 2014, 423, 101–107. [Google Scholar] [CrossRef]
- Huang, J.; Wang, S.; Lyu, S. Facile Preparation of a Robust and Durable Superhydrophobic Coating Using Biodegradable Lignin-Coated Cellulose Nanocrystal Particles. Materials 2017, 10, 1080. [Google Scholar] [CrossRef]
- Das, S.; Kumar, S.; Samal, S.K.; Mohanty, S.; Nayak, S.K. A Review on Superhydrophobic Polymer Nanocoatings: Recent Development and Applications. Ind. Eng. Chem. Res. 2018, 57, 2727–2745. [Google Scholar] [CrossRef]
- Sun, Q.; Lu, Y.; Liu, Y. Growth of hydrophobic TiO2 on wood surface using a hydrothermal method. J. Mater. Sci. 2011, 46, 7706–7712. [Google Scholar] [CrossRef]
- Si, Y.; Guo, Z.; Liu, W. A Robust Epoxy Resins@ Stearic Acid-Mg(OH)2 Micronanosheet Superhydrophobic Omnipotent Protective Coating for Real-Life Applications. ACS Appl. Mater. Interfaces 2016, 8, 16511–16520. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Gao, Z.; Zang, D.; Wang, C.; Li, J. Mechanical stability of superhydrophobic epoxy/silica coating for better water resistance of wood. Holzforschung 2015, 69, 367–374. [Google Scholar] [CrossRef]
- Li, J. Wood Spectroscope; Science Press: Beijing, China, 2003. (In Chinese) [Google Scholar]
- Law, K.-Y. Definitions for Hydrophilicity, Hydrophobicity, and Superhydrophobicity: Getting the Basics Right. J. Phys. Chem. Lett. 2014, 5, 686–688. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Lu, Y.; Zhang, H.; Yang, D.; Wang, Y.; Xu, J.; Tu, J.; Liu, Y.; Li, J. Improved UV resistance in wood through the hydrothermal growth of highly ordered ZnO nanorod arrays. J. Mater. Sci. 2012, 47, 4457–4462. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tuong, V.M.; Huyen, N.V.; Kien, N.T.; Dien, N.V. Durable Epoxy@ZnO Coating for Improvement of Hydrophobicity and Color Stability of Wood. Polymers 2019, 11, 1388. https://doi.org/10.3390/polym11091388
Tuong VM, Huyen NV, Kien NT, Dien NV. Durable Epoxy@ZnO Coating for Improvement of Hydrophobicity and Color Stability of Wood. Polymers. 2019; 11(9):1388. https://doi.org/10.3390/polym11091388
Chicago/Turabian StyleTuong, Vu Manh, Nguyen Van Huyen, Nguyen Trong Kien, and Nguyen Van Dien. 2019. "Durable Epoxy@ZnO Coating for Improvement of Hydrophobicity and Color Stability of Wood" Polymers 11, no. 9: 1388. https://doi.org/10.3390/polym11091388
APA StyleTuong, V. M., Huyen, N. V., Kien, N. T., & Dien, N. V. (2019). Durable Epoxy@ZnO Coating for Improvement of Hydrophobicity and Color Stability of Wood. Polymers, 11(9), 1388. https://doi.org/10.3390/polym11091388