Effect of Formation Route on the Mechanical Properties of the Polyethersulfone Composites Reinforced with Glass Fibers
Abstract
1. Introduction
2. Materials and Methods
Preparation of PES Composites
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gupta, M.K.; Srivastava, R.K. Mechanical properties of hybrid fibers-reinforced polymer composite: A review. Polym. Plast. Technol. Eng. 2016, 55, 626–642. [Google Scholar] [CrossRef]
- Kumar, V.V.; Balaganesan, G.; Lee, J.K.Y.; Neisiany, R.E.; Surendran, S.; Ramakrishna, S. A review of recent advances in nanoengineered polymer composites. Polymers 2019, 11, 644. [Google Scholar] [CrossRef] [PubMed]
- Dikshit, V.; Bhudolia, S.K.; Joshi, S.C. Multiscale polymer composites: A review of the interlaminar fracture toughness improvement. Fibers 2017, 5, 38. [Google Scholar] [CrossRef]
- Munirathnamma, L.M.; Ravikumar, H.B. Microstructural characterization of short glass fibre reinforced polyethersulfone composites: A positron lifetime study. J. Appl. Polym. Sci. 2016, 133, 43647. [Google Scholar] [CrossRef]
- Sen Du, S.; Li, F.; Xiao, H.M.; Li, Y.Q.; Hu, N.; Fu, S.Y. Tensile and flexural properties of graphene oxide coated-short glass fiber reinforced polyethersulfone composites. Compos. Part B Eng. 2016, 99, 407–415. [Google Scholar]
- Caixeta, R.W.; Guiraldo, R.D.; Berger, S.B.; Kaneshima, E.N.; Faria Júnior, E.M.; Drumond, A.C.; Gonini Júnior, A.; Lopes, M.B. Influence of glass-fiber reinforcement on the flexural strength of different resin composites. Appl. Adhes. Sci. 2015, 3, 24. [Google Scholar] [CrossRef][Green Version]
- Jing, M.; Che, J.; Xu, S.; Liu, Z.; Fu, Q. The effect of surface modification of glass fiber on the performance of poly (lactic acid) composites: Graphene oxide vs. silane coupling agents. Appl. Surf. Sci. 2018, 435, 1046–1056. [Google Scholar] [CrossRef]
- Thomason, J.L. The influence of fibre length, diameter and concentration on the modulus of glass fibre reinforced polyamide 6, 6. Compos. Part A Appl. Sci. Manuf. 2008, 39, 1732–1738. [Google Scholar] [CrossRef]
- Sarasini, F.; Tirillò, J.; Sergi, C.; Seghini, M.C.; Cozzarini, L.; Graupner, N. Effect of basalt fibre hybridisation and sizing removal on mechanical and thermal properties of hemp fibre reinforced HDPE composites. Compos. Struct. 2018, 188, 394–406. [Google Scholar] [CrossRef]
- Nassir, N.A.; Birch, R.S.; Cantwell, W.J.; Wang, Q.Y.; Liu, L.Q.; Guan, Z.W. The perforation resistance of glass fibre reinforced PEKK composites. Polym. Test. 2018, 72, 423–431. [Google Scholar] [CrossRef]
- Yang, L.; Thomason, J.L. Interface strength in glass fibre-polypropylene measured using the fibre pull-out and microbond methods. Compos. Part A Appl. Sci. Manuf. 2010, 41, 1077–1083. [Google Scholar] [CrossRef]
- Cech, V.; Prikryl, R.; Balkova, R.; Grycova, A.; Vanek, J. Plasma surface treatment and modification of glass fibers. Compos. Part A Appl. Sci. Manuf. 2002, 33, 1367–1372. [Google Scholar] [CrossRef]
- Zhang, S.; Caprani, C.; Heidarpour, A. Influence of fibre orientation on pultruded GFRP material properties. Compos. Struct. 2018, 204, 368–377. [Google Scholar] [CrossRef]
- Larson, B.K.; Drzal, L.T. Glass fibre sizing/matrix interphase formation in liquid composite moulding: Effects on fibre/matrix adhesion and mechanical properties. Composites 1994, 25, 711–721. [Google Scholar] [CrossRef]
- Zheng, L.; Jian, X. Enhanced continuous glass fibre-reinforced poly (phthalazinone ether sulfone ketone) composites by blending polyetherimide and polyethersulfone. Polym. Polym. Compos. 2011, 19, 445–450. [Google Scholar] [CrossRef]
- Boufaida, Z.; Farge, L.; André, S.; Meshaka, Y. Influence of the fiber/matrix strength on the mechanical properties of a glass fiber/thermoplastic-matrix plain weave fabric composite. Compos. Part A Appl. Sci. Manuf. 2015, 75, 28–38. [Google Scholar] [CrossRef]
- Feih, S.; Wei, J.; Kingshott, P.; Sørensen, B.F. The influence of fibre sizing on the strength and fracture toughness of glass fibre composites. Compos. Part A Appl. Sci. Manuf. 2005, 36, 245–255. [Google Scholar] [CrossRef]
- Zhong, Y.; Cheng, M.; Zhang, X.; Hu, H.; Cao, D.; Li, S. Hygrothermal durability of glass and carbon fiber reinforced composites–A comparative study. Compos. Struct. 2018, 211, 134–143. [Google Scholar] [CrossRef]
- Jafari, A.; Ashrafi, H.; Bazli, M.; Ozbakkaloglu, T. Effect of thermal cycles on mechanical response of pultruded glass fiber reinforced polymer profiles of different geometries. Compos. Struct. 2019, 223, 110959. [Google Scholar] [CrossRef]
- Lee, N.; Jang, J. The effect of fibre content on the mechanical properties of glass fibre mat/polypropylene composites. Compos. Part A Appl. Sci. Manuf. 1999, 30, 815–822. [Google Scholar] [CrossRef]
- Bajerova, M.; Krejcova, K.; Rabiskova, M.; Gajdziok, J.; Masteikova, R. Oxycellulose: Significant characteristics in relation to its pharmaceutical and medical applications. Adv. Polym. Technol. 2009, 28, 199–208. [Google Scholar]
- Thomason, J.L.; Vlug, M.A.; Schipper, G.; Krikor, H.G.L.T. Influence of fibre length and concentration on the properties of glass fibre-reinforced polypropylene: Part 3. Strength and strain at failure. Compos. Part A Appl. Sci. Manuf. 1996, 27, 1075–1084. [Google Scholar] [CrossRef]
- Thomason, J.L.; Schoolenberg, G.E. An investigation of glass fibre/polypropylene interface strength and its effect on composite properties. Composites 1994, 25, 197–203. [Google Scholar] [CrossRef]
- Nygård, P.; Gustafson, C.G. Interface and impregnation relevant tests for continuous glass fibre-polypropylene composites. Compos. Part A Appl. Sci. Manuf. 2003, 34, 995–1006. [Google Scholar] [CrossRef]
- Wongpajan, R.; Mathurosemontri, S.; Takematsu, R.; Xu, H.Y.; Uawongsuwan, P.; Thumsorn, S.; Hamada, H. Interfacial Shear Strength of Glass Fiber Reinforced Polymer Composites by the Modified Rule of Mixture and Kelly-Tyson Model. Energy Procedia 2016, 89, 328–334. [Google Scholar] [CrossRef]
- Harinath, P.N.V.; Radadia, N.; Bramhe, S.; Surendran, D.; Sabane, V.; Singh, A.; Kim, T.N.; Sharbidre, R.; Cheol, B.J.; Peters, L.; et al. Analysis of microstructural, thermal and mechanical properties of unidirectional glass fiber fabrics exhibiting sizing migration. Compos. Part B Eng. 2019, 164, 570–575. [Google Scholar] [CrossRef]
- Yang, L.; Thomason, J.L.; Zhu, W. The influence of thermo-oxidative degradation on the measured interface strength of glass fibre-polypropylene. Compos. Part A Appl. Sci. Manuf. 2011, 42, 1293–1300. [Google Scholar] [CrossRef]
- Palmese, G.R.; Andersen, O.A.; Karbhari, V.M. Effect of glass fiber sizing on the cure kinetics of vinyl-ester resins. Compos. Part A Appl. Sci. Manuf. 1999, 30, 11–18. [Google Scholar] [CrossRef]
- Petersen, H.; Kusano, Y.; Brøndsted, P.; Almdal, K. Preliminary characterization of glass fiber sizing. Proc. 34th Risø Int. Symp. Mater. Sci. 2013, 34, 333–340. [Google Scholar]
- Laura, D.M.; Keskkula, H.; Barlow, J.W.; Paul, D.R. Effect of glass fiber surface chemistry on the mechanical properties of glass fiber reinforced, rubber-toughened nylon 6. Polymer 2002, 43, 4673–4687. [Google Scholar] [CrossRef]
- Thomason, J.L.; Nagel, U.; Yang, L.; Bryce, D. A study of the thermal degradation of glass fibre sizings at composite processing temperatures. Compos. Part A Appl. Sci. Manuf. 2019, 121, 56–63. [Google Scholar] [CrossRef]
- Thomason, J.L.; Dwight, D.W. Use of XPS for characterization of glass fibre coatings. Compos. Part A Appl. Sci. Manuf. 1999, 30, 1401–1413. [Google Scholar] [CrossRef]
- Qin, Y.J.; Xu, Y.H.; Zhang, L.Y.; Zheng, G.Q.; Yan, X.R.; Dai, K.; Liu, C.T.; Shen, C.Y.; Guo, Z.H. Interfacial interaction enhancement by shear-induced β-cylindrite in isotactic polypropylene/glass fiber composites. Polymer 2016, 100, 111–118. [Google Scholar] [CrossRef]
- Dey, M.; Deitzel, J.M.; Gillespie, J.W.; Schweiger, S. Influence of sizing formulations on glass/epoxy interphase properties. Compos. Part A Appl. Sci. Manuf. 2014, 63, 59–67. [Google Scholar] [CrossRef]
- Li, F.; Liu, Y.; Qu, C.B.; Xiao, H.M.; Hua, Y.; Sui, G.X.; Fu, S.Y. Enhanced mechanical properties of short carbon fiber reinforced polyethersulfone composites by graphene oxide coating. Polymer 2015, 59, 155–165. [Google Scholar] [CrossRef]
- Kim, N.; Kim, D.Y.; Kim, Y.J.; Jeong, K.U. Enhanced thermomechanical properties of long and short glass fiber-reinforced polyamide 6,6/polypropylene mixtures by tuning the processing procedures. J. Mater. Sci. 2014, 49, 6333–6342. [Google Scholar] [CrossRef]
- Sheng, Y.; Wen, B.; Li, X.; Hu, X. Effect of surface treatment on the mechanical properties of BF/PLA composite. Fuhe Cailiao Xuebao/Acta Mater. Compos. Sin. 2012, 29, 6. [Google Scholar]
- Feih, S.; Boiocchi, E.; Mathys, G.; Mathys, Z.; Gibson, A.G.; Mouritz, A.P. Mechanical properties of thermally-treated and recycled glass fibres. Compos. Part B Eng. 2011, 42, 350–358. [Google Scholar] [CrossRef]
- Manikandan, V.; Winowlin Jappes, J.T.; Suresh Kumar, S.M.; Amuthakkannan, P. Investigation of the effect of surface modifications on the mechanical properties of basalt fibre reinforced polymer composites. Compos. Part B Eng. 2012, 43, 812–818. [Google Scholar] [CrossRef]
- Thomason, J.L.; Yang, L.; Meier, R. The properties of glass fibres after conditioning at composite recycling temperatures. Compos. Part A Appl. Sci. Manuf. 2014, 61, 201–208. [Google Scholar] [CrossRef]
- Karger-Kocsis, J.; Mahmood, H.; Pegoretti, A. Recent advances in fiber/matrix interphase engineering for polymer composites. Prog. Mater. Sci. 2015, 73, 1–43. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, D.; Jin, X.; Wang, C.; Wang, D.; Ge, H. Modifying glass fibers with graphene oxide: Towards high-performance polymer composites. Compos. Sci. Technol. 2014, 97, 41–45. [Google Scholar] [CrossRef]
- Cech, V.; Palesch, E.; Lukes, J. The glass fiber-polymer matrix interface/interphase characterized by nanoscale imaging techniques. Compos. Sci. Technol. 2013, 83, 22–26. [Google Scholar] [CrossRef]
- Zhou, X.; Lin, Q.; Dai, G. Studies on mechanical properties of discontinuous glass fiber/continuous glass mat/polypropylene composite. Polym. Polym. Compos. 2002, 10, 299–306. [Google Scholar] [CrossRef]
Fiber/Polymer | 50/50 | 60/40 | 70/30 | |||
---|---|---|---|---|---|---|
Property | Flexural Strength, MPa | Young′s Modulus, GPa | Flexural Strength, MPa | Young′s Modulus, GPa | Flexural Strength, MPa | Young′s Modulus, GPa |
As-received GF composites | 417 | 19 | 457 | 22 | 423 | 23 |
Preheated GF composites | 501 | 24 | 540 | 27 | 553 | 33 |
Increase, % | 20.1 | 26.3 | 18.2 | 22.7 | 30.7 | 43.5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sherif, G.; Chukov, D.; Tcherdyntsev, V.; Torokhov, V. Effect of Formation Route on the Mechanical Properties of the Polyethersulfone Composites Reinforced with Glass Fibers. Polymers 2019, 11, 1364. https://doi.org/10.3390/polym11081364
Sherif G, Chukov D, Tcherdyntsev V, Torokhov V. Effect of Formation Route on the Mechanical Properties of the Polyethersulfone Composites Reinforced with Glass Fibers. Polymers. 2019; 11(8):1364. https://doi.org/10.3390/polym11081364
Chicago/Turabian StyleSherif, Galal, Dilyus Chukov, Victor Tcherdyntsev, and Valerii Torokhov. 2019. "Effect of Formation Route on the Mechanical Properties of the Polyethersulfone Composites Reinforced with Glass Fibers" Polymers 11, no. 8: 1364. https://doi.org/10.3390/polym11081364
APA StyleSherif, G., Chukov, D., Tcherdyntsev, V., & Torokhov, V. (2019). Effect of Formation Route on the Mechanical Properties of the Polyethersulfone Composites Reinforced with Glass Fibers. Polymers, 11(8), 1364. https://doi.org/10.3390/polym11081364