Tensile and Interfacial Loading Characteristics of Boron Nitride-Carbon Nanosheet Reinforced Polymer Nanocomposites
Abstract
:1. Introduction
2. Computational Model
3. Tensile Loading Characteristics of Graphene and BNNS Reinforced Nanocomposites
4. Tensile Loading Characteristics of BN–C/PE Nanocomposites
4.1. Effect of Chirality and Lattice Structure of BN–C Nanosheet
4.2. Effect of Vacancy Defects in BN–C Nanosheet Lattice
4.3. Effect of Temperature
5. Interfacial Mechanics of BN–C/PE Nanocomposites
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhao, L.; Jiang, B.; Huang, Y. Functionalized graphene-reinforced polysiloxane nanocomposite with improved mechanical performance and efficient healing properties. J. Appl. Polym. Sci. 2019, 136. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, H.; Du, X.; Zhang, Y.; Zhou, H.; Yuan, H.; Liu, H.Y.; Mai, Y.W. Facile fabrication of large 3D graphene filler modified epoxy composites with improved thermal conduction and tribological performance. Carbon 2018, 139, 1168–1177. [Google Scholar] [CrossRef]
- Zhou, X.; Li, D.; Wan, S.; Cheng, Q.; Ji, B. In silicon testing of the mechanical properties of graphene oxide-silk nanocomposites. Acta Mech. 2019, 230, 1413–1425. [Google Scholar] [CrossRef]
- Garg, A.; Vijayaraghavan, V.; Wong, C.H.; Tai, K.; Sumithra, K.; Gao, L.; Singru, P.M. Combined CI-MD approach in formulation of engineering moduli of single layer graphene sheet. Simul. Model. Pract. Theory 2014, 48, 93–111. [Google Scholar] [CrossRef]
- Lin, M.; Li, Y.; Xu, K.; Ou, Y.; Su, L.; Feng, X.; Li, J.; Qi, H.; Liu, D. Thermally conductive nanostructured, aramid dielectric composite films with boron nitride nanosheets. Compos. Sci. Technol. 2019, 175, 85–91. [Google Scholar] [CrossRef]
- Nguyen, H.L.; Hanif, Z.; Park, S.A.; Choi, B.G.; Tran, T.H.; Hwang, D.S.; Park, J.; Hwang, S.Y.; Oh, D.X. Sustainable boron nitride nanosheet-reinforced cellulose nanofiber composite film with oxygen barrier without the cost of color and cytotoxicity. Polymers 2018, 10, 501. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Pei, Q.X.; Liu, H.Y.; Wei, N. Thermal conductivity of a h-BCN monolayer. Phys. Chem. Chem. Phys. 2017, 19, 27326–27331. [Google Scholar] [CrossRef]
- Vijayaraghavan, V.; Garg, A.; Wong, C.H.; Tai, K.; Singru, P.M. An integrated computational approach for determining the elastic properties of boron nitride nanotubes. Int. J. Mech. Mater. Des. 2015, 11, 1–14. [Google Scholar] [CrossRef]
- Che, J.; Jing, M.; Liu, D.; Wang, K.; Fu, Q. Largely enhanced thermal conductivity of HDPE/boron nitride/carbon nanotubes ternary composites via filler network-network synergy and orientation. Compos. Part A Appl. Sci. Manuf. 2018, 112, 32–39. [Google Scholar] [CrossRef]
- Zhong, B.; Cheng, Y.; Wang, M.; Bai, Y.; Huang, X.; Yu, Y.; Wang, H.; Wen, G. Three dimensional hexagonal boron nitride nanosheet/carbon nanotube composites with light weight and enhanced microwave absorption performance. Compos. Part A Appl. Sci. Manuf. 2018, 112, 515–524. [Google Scholar] [CrossRef]
- Lau, A.K.T.; Hui, D. The revolutionary creation of new advanced materials—Carbon nanotube composites. Compos. Part B Eng. 2002, 33, 263–277. [Google Scholar] [CrossRef]
- Lau, K.T.; Chipara, M.; Ling, H.Y.; Hui, D. On the effective elastic moduli of carbon nanotubes for nanocomposite structures. Compos. Part B Eng. 2004, 35, 95–101. [Google Scholar] [CrossRef]
- Paiva, M.C.; Zhou, B.; Fernando, K.A.S.; Lin, Y.; Kennedy, J.M.; Sun, Y.P. Mechanical and morphological characterization of polymer-carbon nanocomposites from functionalized carbon nanotubes. Carbon 2004, 42, 2849–2854. [Google Scholar] [CrossRef]
- Thostenson, E.T.; Chou, T.W. Aligned multi-walled carbon nanotube-reinforced composites: Processing and mechanical characterization. J. Phys. D Appl. Phys. 2002, 35, L77–L80. [Google Scholar] [CrossRef]
- Ahmad, M.W.; Dey, B.; Sarkhel, G.; Bag, D.S.; Choudhury, A. Exfoliated graphene reinforced polybenzimidazole nanocomposite with improved electrical, mechanical and thermal properties. Mater. Chem. Phys. 2019, 223, 426–433. [Google Scholar] [CrossRef]
- Basso, M.; Azoti, W.; Elmarakbi, H.; Elmarakbi, A. Multiscale simulation of the interlaminar failure of graphene nanoplatelets reinforced fibers laminate composite materials. J. Appl. Polym. Sci. 2019, 136. [Google Scholar] [CrossRef] [Green Version]
- Santhapuram, R.R.; Muller, S.E.; Nair, A.K. Nanoscale bending properties of bio-inspired Ni-graphene nanocomposites. Compos. Struct. 2019, 220, 798–808. [Google Scholar] [CrossRef]
- Shehzad, F.; Ahmad, M.I.; Al-Harthi, M.A. Photooxidative degradation of graphene-reinforced high-density polyethylene nanocomposites. J. Appl. Polym. Sci. 2019, 136. [Google Scholar] [CrossRef]
- Knauert, S.T.; Douglas, J.F.; Starr, F.W. The effect of nanoparticle shape on polymer-nanocomposite rheology and tensile strength. J. Polym. Sci. Part B Polym. Phys. 2007, 45, 1882–1897. [Google Scholar] [CrossRef] [Green Version]
- Harichandran, R.; Selvakumar, N. Microstructure and mechanical characterization of (B 4 C+ h-BN)/Al hybrid nanocomposites processed by ultrasound assisted casting. Int. J. Mech. Sci. 2018, 144, 814–826. [Google Scholar] [CrossRef]
- Penchal Reddy, M.; Manakari, V.; Parande, G.; Ubaid, F.; Shakoor, R.A.; Mohamed, A.M.A.; Gupta, M. Enhancing compressive, tensile, thermal and damping response of pure Al using BN nanoparticles. J. Alloys Compd. 2018, 762, 398–408. [Google Scholar] [CrossRef]
- Rezaei, R.; Shariati, M.; Tavakoli-Anbaran, H. Mechanical characteristics and deformation mechanism of boron nitride nanotube reinforced metal matrix nanocomposite based on molecular dynamics simulations. J. Mater. Res. 2018, 33, 1733–1741. [Google Scholar] [CrossRef]
- Zhang, J.; Peng, X. Superior interfacial mechanical properties of boron nitride-carbon nanotube reinforced nanocomposites: A molecular dynamics study. Mater. Chem. Phys. 2017, 198, 250–257. [Google Scholar] [CrossRef]
- Lee, D.; Lee, S.; Byun, S.; Paik, K.W.; Song, S.H. Novel dielectric BN/epoxy nanocomposites with enhanced heat dissipation performance for electronic packaging. Compos. Part A Appl. Sci. Manuf. 2018, 107, 217–223. [Google Scholar] [CrossRef]
- TabkhPaz, M.; Park, D.Y.; Lee, P.C.; Hugo, R.; Park, S.S. Development of nanocomposite coatings with improved mechanical, thermal, and corrosion protection properties. J. Compos. Mater. 2018, 52, 1045–1060. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, C. Mechanical properties of hybrid boron nitride-carbon nanotubes. J. Phys. D Appl. Phys. 2016, 49, 155305. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, C. Beat vibration of hybrid boron nitride-carbon nanotubes—A new avenue to atomic-scale mass sensing. Comput. Mater. Sci. 2017, 127, 270–276. [Google Scholar] [CrossRef]
- Sun, R.; Li, L.; Feng, C.; Kitipornchai, S.; Yang, J. Tensile behavior of polymer nanocomposite reinforced with graphene containing defects. Eur. Polym. J. 2018, 98, 475–482. [Google Scholar] [CrossRef]
- Rahimian-Koloor, S.M.; Hashemianzadeh, S.M.; Shokrieh, M.M. Effect of CNT structural defects on the mechanical properties of CNT/Epoxy nanocomposite. Phys. B Condens. Matter 2018, 540, 16–25. [Google Scholar] [CrossRef]
- Güryel, S.; Walker, M.; Geerlings, P.; De Proft, F.; Wilson, M.R. Molecular dynamics simulations of the structure and the morphology of graphene/polymer nanocomposites. Phys. Chem. Chem. Phys. 2017, 19, 12959–12969. [Google Scholar] [CrossRef] [Green Version]
- Nouranian, S.; Tschopp, M.A.; Gwaltney, S.R.; Baskes, M.I.; Horstemeyer, M.F. An interatomic potential for saturated hydrocarbons based on the modified embedded-atom method. Phys. Chem. Chem. Phys. 2014, 16, 6233–6249. [Google Scholar] [CrossRef] [Green Version]
- Bowman, A.L.; Mun, S.; Nouranian, S.; Huddleston, B.D.; Gwaltney, S.R.; Baskes, M.I.; Horstemeyer, M. Free volume and internal structural evolution during creep in model amorphous polyethylene by Molecular Dynamics simulations. Polymer 2019, 170, 85–100. [Google Scholar] [CrossRef]
- Nouranian, S.; Gwaltney, S.R.; Baskes, M.I.; Tschopp, M.A.; Horstemeyer, M.F. Simulations of tensile bond rupture in single alkane molecules using reactive interatomic potentials. Chem. Phys. Lett. 2015, 635, 278–284. [Google Scholar] [CrossRef]
- Tersoff, J. Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. Phys. Rev. B 1989, 39, 5566–5568. [Google Scholar] [CrossRef]
- KinacI, A.; Haskins, J.B.; Sevik, C.; ÇaǧIn, T. Thermal conductivity of BN-C nanostructures. Phys. Rev. B Condens. Matter Mater. Phys. 2012, 86, 115410. [Google Scholar] [CrossRef]
- Donald, W.B.; Olga, A.S.; Judith, A.H.; Steven, J.S.; Boris, N.; Susan, B.S. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys. Condens. Matter 2002, 14, 783. [Google Scholar]
- Kudin, K.N.; Scuseria, G.E.; Yakobson, B.I. C2F, BN, and C nanoshell elasticity from ab initio computations. Phys. Rev. B Condens. Matter Mater. Phys. 2001, 64, 235406. [Google Scholar] [CrossRef]
- Lee, J.H. A study on a boron-nitride nanotube as a gigahertz oscillator. J. Korean Phys. Soc. 2006, 49, 172–176. [Google Scholar]
- Vijayaraghavan, V.; Dethan, J.F.N.; Garg, A. Tensile loading characteristics of hydrogen stored carbon nanotubes in PEM fuel cell operating conditions using molecular dynamics simulation. Mol. Simul. 2018, 44, 736–742. [Google Scholar] [CrossRef]
- Vijayaraghavan, V.; Dethan, J.F.N.; Garg, A. Nanomechanics and modelling of hydrogen stored carbon nanotubes under compression for PEM fuel cell applications. Comput. Mater. Sci. 2018, 146, 176–183. [Google Scholar] [CrossRef]
- Martinez, L.; Andrade, R.; Birgin, E.G.; Martínez, J.M. PACKMOL: A package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 2009, 30, 2157–2164. [Google Scholar] [CrossRef] [PubMed]
- Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef]
- Hughes, F.; Prudom, A.; Swallowe, G. The high strain-rate behaviour of three molecular weights of polyethylene examined with a magnesium alloy split-Hopkinson pressure bar. Polym. Test. 2013, 32, 827–834. [Google Scholar] [CrossRef] [Green Version]
- Vijayaraghavan, V.; Zhang, L. Nanomechanics of single layer hybrid boron nitride–carbon nanosheets: A molecular dynamics study. Comput. Mater. Sci. 2019, 159, 376–384. [Google Scholar] [CrossRef]
- Golberg, D.; Bando, Y.; Huang, Y.; Terao, T.; Mitome, M.; Tang, C.; Zhi, C. Boron nitride nanotubes and nanosheets. ACS Nano 2010, 4, 2979–2993. [Google Scholar] [CrossRef] [PubMed]
- Vijayaraghavan, V.; Zhang, L. Effective mechanical properties and thickness determination of boron nitride nanosheets using molecular dynamics simulation. Nanomaterials 2018, 8, 546. [Google Scholar] [CrossRef] [PubMed]
- Liao, K.; Li, S. Interfacial characteristics of a carbon nanotube-polystyrene composite system. Appl. Phys. Lett. 2001, 79, 4225–4227. [Google Scholar] [CrossRef]
- Xiao, T.; Liu, J.; Xiong, H. Effects of different functionalization schemes on the interfacial strength of carbon nanotube polyethylene composite. Acta Mech. Solida Sin. 2015, 28, 277–284. [Google Scholar] [CrossRef]
Loading Direction | BN–C Dimensions (W × L) | Total Number of Atoms |
---|---|---|
Armchair | 19.09 Å × 66.89 Å | 496 |
Zigzag | 20.58 Å × 67.47 Å | 540 |
Sheet Type | Reduction of Maximum Tensile Force (%) |
---|---|
Graphene | 21.81 |
BN–C nanosheet | 18.55 |
BN nanosheet | 17.39 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vijayaraghavan, V.; Zhang, L. Tensile and Interfacial Loading Characteristics of Boron Nitride-Carbon Nanosheet Reinforced Polymer Nanocomposites. Polymers 2019, 11, 1075. https://doi.org/10.3390/polym11061075
Vijayaraghavan V, Zhang L. Tensile and Interfacial Loading Characteristics of Boron Nitride-Carbon Nanosheet Reinforced Polymer Nanocomposites. Polymers. 2019; 11(6):1075. https://doi.org/10.3390/polym11061075
Chicago/Turabian StyleVijayaraghavan, Venkatesh, and Liangchi Zhang. 2019. "Tensile and Interfacial Loading Characteristics of Boron Nitride-Carbon Nanosheet Reinforced Polymer Nanocomposites" Polymers 11, no. 6: 1075. https://doi.org/10.3390/polym11061075