Characterization of Reduced and Surface-Modified Graphene Oxide in Poly(Ethylene-co-Butyl Acrylate) Composites for Electrical Applications
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Procedures to Modify GO: Thermal Reduction, Silanization, Attachment of Initiator, and Surface-Initiated Atom-Transfer Radical Polymerization (SI-ATRP) of PBMA (rGO, rGO-Silanized, rGO-Initiated and rGO-PBMAs)
2.3. Nanocomposite Formation from rGO-PBMAs and the EBA Matrix
2.4. Instrumentation and Characterization Methods
3. Results and Discussion
3.1. Characterization of the rGO Surface Modifications Using TGA, FT-IR, and SEC
3.2. Characterization of the Nanocomposites Using TGA, DSC, SEM, and Tensile Tests
3.3. DC Resistivity Measurements of the Nanocomposites
3.4. Monte-Carlo Simulation Results for the Nanocomposite Resistivity
4. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Chen, Q.; Gong, S.; Moll, J.; Zhao, D.; Kumar, S.K.; Colby, R.H. Mechanical reinforcement of polymer nanocomposites from percolation of a nanoparticle network. ACS Macro Lett. 2015, 4, 398–402. [Google Scholar] [CrossRef]
- Wåhlander, M.; Nilsson, F.; Andersson, R.L.; Carlmark, A.; Hillborg, H.; Malmström, E. Reduced and surface-modified graphene oxide with nonlinear resistivity. Macromol. Rapid Commun. 2017, 38, 1700291. [Google Scholar] [CrossRef]
- Qu, M.; Nilsson, F.; Schubert, D. Effect of filler orientation on the electrical conductivity of carbon fiber/pmma composites. Fibers 2018, 6, 3. [Google Scholar] [CrossRef]
- Virsberg, L.G.; Ware, P.H. A New Termination for Underground Distribution. IEEE Trans. Power Appar. Syst. 1967, PAS-86, 1129. [Google Scholar] [CrossRef]
- Mårtensson, E.; Netteblad, B.; Gefvert, U.; Palmqvist, L. “Electrical properties of field grading materials with silicon carbide and carbon black”. Presented at the IEEE ICSD ‘98, Västerås, Sweden, 22–25 June 1998. [Google Scholar]
- Donzel, L.; Christen, T.; Kessler, R.; Greuter, F.; Gramespacher, H. “Silicone Composites for HV applications based on microvaristors”. Presented at the IEEE ICSD ‘04, Toulouse, France, 5–9 July 2004. [Google Scholar]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Zangmeister, C.D. Preparation and evaluation of graphite oxide reduced at 220°c. Chem. Mater. 2010, 22, 5625–5629. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Bonaccorso, F.; Fal’ko, V.; Novoselov, K.S.; Roche, S.; Boeggild, P.; Borini, S.; Koppens, F.H.L.; Palermo, V.; Pugno, N.; et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 2015, 7, 4598–4810. [Google Scholar] [CrossRef] [Green Version]
- Singh, M.; Yadav, A.; Kumar, S.; Agarwal, P. Annealing induced electrical conduction and band gap variation in thermally reduced graphene oxide films with different sp2/sp3 fraction. Appl. Surf. Sci. 2015, 326, 236–242. [Google Scholar] [CrossRef]
- Wåhlander, M.; Nilsson, F.; Carlmark, A.; Gedde, U.W.; Edmondson, S.; Malmström, E. Hydrophobic matrix-free graphene-oxide composites with isotropic and nematic states. Nanoscale 2016, 8, 14730–14745. [Google Scholar] [CrossRef]
- Wang, Z.; Nelson, J.K.; Hillborg, H.; Zhao, S.; Schadler, L.S. Graphene oxide filled nanocomposite with novel electrical and dielectric properties. Adv. Mater. 2012, 24, 3134–3137. [Google Scholar] [CrossRef]
- Li, W.; Gedde, U.W.; Hillborg, H. Structure and electrical properties of silicone rubber filled with thermally reduced graphene oxide. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 1156–1163. [Google Scholar] [CrossRef]
- Guex, L.G.; Sacci, B.; Peuvot, K.F.; Andersson, R.L.; Pourrahimi, A.M.; Ström, V.; Farris, S.; Olsson, R.T. Experimental review: chemical reduction of graphene oxide (GO) to reduced graphene oxide (rGO) by aqueous chemistry. Nanoscale 2017, 9(27), 9562–9571. [Google Scholar] [CrossRef] [PubMed]
- Cobo Sanchez, C.; Wåhlander, M.; Taylor, N.; Fogelström, L.; Malmström, E. Novel nanocomposite of poly(lauryl methacrylate)-grafted al2o3 nanoparticles in ldpe. ACS Appl. Mater. Interfaces 2015, 7, 25669–25678. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Cho, U.R. Enhanced interfacial interactions of isocyanate-grafted graphene oxide/nitrile-butadiene rubber nanocomposites: Mechanical and thermo-physical properties. Polym. Compos. 2018. Ahead of Print. [Google Scholar] [CrossRef]
- Zhang, C.; Li, T.; Song, H.; Han, Y.; Dong, Y.; Wang, Y.; Wang, Q. Improving the thermal conductivity and mechanical property of epoxy composites by introducing polyhedral oligomeric silsesquioxane-grafted graphene oxide. Polym. Compos. 2018, 39, E1890–E1899. [Google Scholar] [CrossRef]
- Wu, C.; Huang, X.; Wang, G.; Wu, X.; Yang, K.; Li, S.; Jiang, P. Hyperbranched-polymer functionalization of graphene sheets for enhanced mechanical and dielectric properties of polyurethane composites. J. Mater. Chem. 2012, 22, 7010–7019. [Google Scholar] [CrossRef]
- Thakur, S.; Karak, N. Ultratough, ductile, castor oil-based, hyperbranched, polyurethane nanocomposite using functionalized reduced graphene oxide. ACS Sustain. Chem. Eng. 2014, 2, 1195–1202. [Google Scholar] [CrossRef]
- Yadav, S.K.; Cho, J.W. Functionalized graphene nanoplatelets for enhanced mechanical and thermal properties of polyurethane nanocomposites. Appl. Surf. Sci. 2013, 266, 360–367. [Google Scholar] [CrossRef]
- Fang, M.; Wang, K.; Lu, H.; Yang, Y.; Nutt, S. Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. J. Mater. Chem. 2009, 19, 7098–7105. [Google Scholar] [CrossRef]
- Goncalves, G.; Marques, P.A.A.P.; Barros-Timmons, A.; Bdkin, I.; Singh, M.K.; Emami, N.; Gracio, J. Graphene oxide modified with pmma via atrp as a reinforcement filler. J. Mater. Chem. 2010, 20, 9927–9934. [Google Scholar] [CrossRef]
- Kar, G.P.; Biswas, S.; Bose, S. Tailoring the interface of an immiscible polymer blend by a mutually miscible homopolymer grafted onto graphene oxide: Outstanding mechanical properties. Phys. Chem. Chem. Phys. 2015, 17, 1811–1821. [Google Scholar] [CrossRef]
- Guan, L.-Z.; Wan, Y.-J.; Gong, L.-X.; Yan, D.; Tang, L.-C.; Wu, L.-B.; Jiang, J.-X.; Lai, G.-Q. Toward effective and tunable interphases in graphene oxide/epoxy composites by grafting different chain lengths of polyetheramine onto graphene oxide. J. Mater. Chem. A 2014, 2, 15058–15069. [Google Scholar] [CrossRef]
- Zhang, T.; Huang, W.; Zhang, N.; Huang, T.; Yang, J.; Wang, Y. Grafting of polystyrene onto reduced graphene oxide by emulsion polymerization for dielectric polymer composites: High dielectric constant and low dielectric loss tuned by varied grafting amount of polystyrene. Eur. Polym. J. 2017, 94, 196–207. [Google Scholar] [CrossRef]
- Nilsson, F.; Karlsson, M.; Pallon, L.; Giacinti, M.; Olsson, R.T.; Venturi, D.; Gedde, U.W.; Hedenqvist, M.S. Influence of water uptake on the electrical dc-conductivity of insulating ldpe/mgo nanocomposites. Compos. Sci. Technol. 2017, 152, 11–19. [Google Scholar] [CrossRef]
- Nilsson, F.; Kruckel, J.; Schubert, D.W.; Chen, F.; Unge, M.; Gedde, U.W.; Hedenqvist, M.S. Simulating the effective electric conductivity of polymer composites with high aspect ratio fillers. Compos. Sci. Technol. 2016, 132, 16–23. [Google Scholar] [CrossRef]
- Balberg, I.; Anderson, C.H.; Alexander, S.; Wagner, N. Excluded volume and its relation to the onset of percolation. Phys. Rev. B 1984, 30, 3933–3943. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cobo Sánchez, C.; Wåhlander, M.; Karlsson, M.; Marin Quintero, D.C.; Hillborg, H.; Malmström, E.; Nilsson, F. Characterization of Reduced and Surface-Modified Graphene Oxide in Poly(Ethylene-co-Butyl Acrylate) Composites for Electrical Applications. Polymers 2019, 11, 740. https://doi.org/10.3390/polym11040740
Cobo Sánchez C, Wåhlander M, Karlsson M, Marin Quintero DC, Hillborg H, Malmström E, Nilsson F. Characterization of Reduced and Surface-Modified Graphene Oxide in Poly(Ethylene-co-Butyl Acrylate) Composites for Electrical Applications. Polymers. 2019; 11(4):740. https://doi.org/10.3390/polym11040740
Chicago/Turabian StyleCobo Sánchez, Carmen, Martin Wåhlander, Mattias Karlsson, Diana C. Marin Quintero, Henrik Hillborg, Eva Malmström, and Fritjof Nilsson. 2019. "Characterization of Reduced and Surface-Modified Graphene Oxide in Poly(Ethylene-co-Butyl Acrylate) Composites for Electrical Applications" Polymers 11, no. 4: 740. https://doi.org/10.3390/polym11040740
APA StyleCobo Sánchez, C., Wåhlander, M., Karlsson, M., Marin Quintero, D. C., Hillborg, H., Malmström, E., & Nilsson, F. (2019). Characterization of Reduced and Surface-Modified Graphene Oxide in Poly(Ethylene-co-Butyl Acrylate) Composites for Electrical Applications. Polymers, 11(4), 740. https://doi.org/10.3390/polym11040740