Dye-Doped Electrically Smart Windows Based on Polymer-Stabilized Liquid Crystal
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. PSLC Device Preparation
2.3. Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Baetens, R.; Jelle, B.P.; Gustavsen, A. Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review. Sol. Energy Mater. Sol. Cells 2010, 94, 87–105. [Google Scholar] [CrossRef]
- Lampert, C.M. Smart switchable glazing for solar energy and daylight control. Sol. Energy Mater. Sol. Cells 1998, 52, 207–221. [Google Scholar] [CrossRef]
- Granqvist, C.G. Electrochromics for smart windows: Oxide-based thin films and devices. Thin Solid Films 2014, 564, 1–38. [Google Scholar] [CrossRef]
- Cupelli, D.; Nicoletta, F.P.; Manfredi, S.; Vivacqua, M.; Formoso, P.; De Filpo, G.; Chidichimo, G. Self-adjusting smart windows based on polymer-dispersed liquid crystals. Sol. Energy Mater. Sol. Cells 2009, 93, 2008–2012. [Google Scholar] [CrossRef]
- Nicoletta, F.P.; Chidichimo, G.; Cupelli, D.; De Filpo, G.; De Benedittis, M.; Gabriele, B.; Salerno, G.; Fazio, A. Electrochromic Polymer-Dispersed Liquid-Crystal Film: A New Bifunctional Device. Adv. Funct. Mater. 2005, 15, 995–999. [Google Scholar] [CrossRef]
- Liu, Y.J.; Ding, X.Y.; Lin, S.C.S.; Shi, J.J.; Chiang, I.K.; Huang, T.J. Surface Acoustic Wave Driven Light Shutters Using Polymer-Dispersed Liquid Crystals. Adv. Mater. 2011, 23, 1656–1659. [Google Scholar] [CrossRef] [PubMed]
- Lan, Z.J.; Li, Y.; Dai, H.T.; Luo, D. Bistable Smart Window Based on Ionic Liquid Doped Cholesteric Liquid Crystal. IEEE Photonics J. 2017, 9, 7. [Google Scholar] [CrossRef]
- Khandelwal, H.; Loonen, R.C.G.M.; Hensen, J.L.M.; Schenning, A.P.H.J.; Debije, M.G. Application of broadband infrared reflector based on cholesteric liquid crystal polymer bilayer film to windows and its impact on reducing the energy consumption in buildings. J. Mater. Chem. A 2014, 2, 14622. [Google Scholar] [CrossRef]
- Rajh, D.; Shelestiuk, S.; Mertelj, A.; Mrzel, A.; Umek, P.; Irusta, S.; Zak, A.; Drevenšek-Olenik, I. Effect of inorganic 1D nanoparticles on electrooptic properties of 5CB liquid crystal. Phys. Status Solidi (A) 2013, 210, 2328–2334. [Google Scholar] [CrossRef]
- Kitzerow, H.S.; Lorenz, A.; Matthias, H. Tuneable photonic crystals obtained by liquid crystal infiltration. Phys. Status Solidi (A) 2007, 204, 3754–3767. [Google Scholar] [CrossRef]
- Yu, B.H.; Huh, J.W.; Kim, K.H.; Yoon, T.H. Light shutter using dichroic-dye-doped long-pitch cholesteric liquid crystals. Opt. Express 2013, 21, 29332–29337. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.H.; Ji, S.-M.; Kim, J.-H.; Huh, J.-W.; Yoon, T.-H. Light shutter using dye-doped cholesteric liquid crystals with polymer network structure. J. Inf. Disp. 2016, 18, 13–17. [Google Scholar] [CrossRef]
- Chung, S.H.; Noh, H.Y. Polymer-dispersed liquid crystal devices with graphene electrodes. Opt. Express 2015, 23, 32149–32157. [Google Scholar] [CrossRef]
- Kim, Y.; Jung, D.; Jeong, S.; Kim, K.; Choi, W.; Seo, Y. Optical properties and optimized conditions for polymer dispersed liquid crystal containing UV curable polymer and nematic liquid crystal. Curr. Appl. Phys. 2015, 15, 292–297. [Google Scholar] [CrossRef]
- Cupelli, D.; Nicoletta, F.P.; De Filpo, G.; Formoso, P.; Chidichimo, G. Reverse mode operation polymer dispersed liquid crystal with a positive dielectric anisotropy liquid crystal. J. Polym. Sci. Part B Polym. Phys. 2011, 49, 257–262. [Google Scholar] [CrossRef]
- De Filpo, G.; Formoso, P.; Manfredi, S.; Mashin, A.I.; Nicoletta, F.P. Preparation and characterisation of bifunctional reverse-mode polymer-dispersed liquid crystals. Liq. Cryst. 2017, 44, 1607–1616. [Google Scholar] [CrossRef]
- Dierking, I. Recent developments in polymer stabilised liquid crystals. Polym. Chem. 2010, 1. [Google Scholar] [CrossRef]
- Dierking, I. Polymer Network±Stabilized Liquid Crystals. Adv. Mater. 2000, 13, 167–181. [Google Scholar] [CrossRef]
- Yan, X.; Liu, W.; Zhou, Y.; Yuan, D.; Hu, X.; Zhao, W.; Zhou, G. Improvement of Electro-Optical Properties of PSLC Devices by Silver Nanowire Doping. Appl. Sci. 2019, 9, 145. [Google Scholar] [CrossRef]
- Tseng, M.C.; Meng, C.L.; Tang, S.T.; Kwok, H.S. Haze Free Reverse Mode Liquid Crystal Light Control Film with Inhomoge-Neous Alignment Layer. U.S. Patent Appl. No. 62/603,602, 6 June 2017. [Google Scholar]
- Meng, C.; Tseng, M.C.; Tang, S.T.; Zhao, C.X.; Yeung, S.Y.; Kwok, H.S. Normally transparent smart window with haze enhancement via inhomogeneous alignment surface. Liq. Cryst. 2018. [Google Scholar] [CrossRef]
- Huang, C.Y.; Chih, Y.S.; Ke, S.W. Effect of chiral dopant and monomer concentrations on the electro-optical response of a polymer stabilized cholesteric texture cell. Appl. Phys. B 2007, 86, 123–127. [Google Scholar] [CrossRef]
- Ma, R.Q.; Yang, D.K. Fréedericksz transition in polymer-stabilized nematic liquid crystals. Phys. Rev. E 2000, 61, 1567. [Google Scholar] [CrossRef]
- Ma, J.; Shi, L.; Yang, D.-K. Bistable Polymer Stabilized Cholesteric Texture Light Shutter. Appl. Phys. Express 2010, 3. [Google Scholar] [CrossRef]
- Gilbert, P.U.P.A.; Haeberli, W. Experiments on subtractive color mixing with a spectrophotometer. Am. J. Phys. 2007, 75, 313–319. [Google Scholar] [CrossRef]
- Deshmukh, R.R.; Malik, M.K. Effect of dichroic dye on phase separation kinetics and electro-optical characteristics of polymer dispersed liquid crystals. J. Phys. Chem. Solids 2013, 74, 215–224. [Google Scholar] [CrossRef]
- Nimmy John, V.; Varanakkottu, S.N.; Varghese, S. Flexible, ferroelectric nanoparticle doped polymer dispersed liquid crystal devices for lower switching voltage and nanoenergy generation. Opt. Mater. 2018, 80, 233–240. [Google Scholar] [CrossRef]
- Shi, Z.; Wang, Y.; Wang, Y. Effects of thiol monomers on the electro-optical properties of polymer-dispersed liquid crystal films prepared by nucleophile-initiated thiol-ene click reaction. Liq. Cryst. 2018, 45, 1746–1752. [Google Scholar] [CrossRef]
Sample | HCM009 | Irg651 | LT1641B | RL002 | HNG30400-200 |
---|---|---|---|---|---|
(wt %) | (wt %) | (wt %) | (wt %) | (wt %) | |
Mixture 1 | 3 | 0.5 | 0 | 0 | 96.5 |
Mixture 2 | 3 | 0.5 | 1 | 0 | 95.5 |
Mixture 3 | 3 | 0.5 | 0 | 1 | 95.5 |
Mixture 4 | 3 | 0.5 | 0.2 | 0.4 | 95.9 |
Sample | Vth 1 (V) | Vsat 2 (V) | τon 3 (ms) | τoff 4 (ms) |
---|---|---|---|---|
PSLC | 17.2 | 35.1 | 4 | 24 |
PDLC [26] | 11.1 | 60 | - | - |
PDLC [14] | 24.6 | 42.4 | 1.2 | 29.3 |
PDLC [27] | 37 | 80 | ||
PDLC [28] | 10 | 60 | 193 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, H.; Xie, Z.; Ju, C.; Hu, X.; Yuan, D.; Zhao, W.; Shui, L.; Zhou, G. Dye-Doped Electrically Smart Windows Based on Polymer-Stabilized Liquid Crystal. Polymers 2019, 11, 694. https://doi.org/10.3390/polym11040694
Sun H, Xie Z, Ju C, Hu X, Yuan D, Zhao W, Shui L, Zhou G. Dye-Doped Electrically Smart Windows Based on Polymer-Stabilized Liquid Crystal. Polymers. 2019; 11(4):694. https://doi.org/10.3390/polym11040694
Chicago/Turabian StyleSun, Haitao, Zuoping Xie, Chun Ju, Xiaowen Hu, Dong Yuan, Wei Zhao, Lingling Shui, and Guofu Zhou. 2019. "Dye-Doped Electrically Smart Windows Based on Polymer-Stabilized Liquid Crystal" Polymers 11, no. 4: 694. https://doi.org/10.3390/polym11040694
APA StyleSun, H., Xie, Z., Ju, C., Hu, X., Yuan, D., Zhao, W., Shui, L., & Zhou, G. (2019). Dye-Doped Electrically Smart Windows Based on Polymer-Stabilized Liquid Crystal. Polymers, 11(4), 694. https://doi.org/10.3390/polym11040694