On the Gas Storage Properties of 3D Porous Carbons Derived from Hyper-Crosslinked Polymers
Abstract
:1. Introduction
2. Experimental Section
2.1. Synthesis of UPO Materials
2.2. Post Synthesis Treatments
2.3. Characterization Techniques
3. Results and Discussion
3.1. Effects of Thermal Treatment at 380 °C
3.2. Effects of Chemical Activation at High Temperature
3.3. High Pressure Gas Uptake
3.4. Packing Densities
3.5. Methane Storage Capacity of KUPO16-2-750
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Deanna, M.D.; Berend, S.; Jeffrey, R.L. Carbon Dioxide Capture: Prospects for New Materials. Angew. Chem. Int. Ed. 2010, 49, 6058–6082. [Google Scholar] [Green Version]
- Frota, W.M.; Sa, J.A.S.; Moraes, S.S.B.; Rocha, B.R.P.; Ismail, K.A.R. Natural gas: The option for a sustainable development and energy in the state of Amazonas. Energy Policy 2010, 38, 3830–3836. [Google Scholar] [CrossRef]
- Jain, I.P. Hydrogen the fuel for 21st century. Int. J. Hydrog. Energy 2009, 34, 7368–7378. [Google Scholar] [CrossRef]
- Kelly, N.A.; Gibson, T.L.; Cai, M.; Spearot, J.A.; Ouwerkerk, D.B. Development of a renewable hydrogen economy: Optimization of existing technologies. Int. J. Hydrog. Energy 2010, 35, 892–899. [Google Scholar] [CrossRef] [Green Version]
- Matsuda, R. Design and Synthesis of Porous Coordination Polymers Showing Unique Guest Adsorption Behaviors. Bull. Chem. Soc. Jpn. 2013, 86, 1117–1131. [Google Scholar] [CrossRef] [Green Version]
- Broom, D.P.; Thomas, K.M. Gas Adsorption by Nanoporous Materials: Future Applications and Experimental Challenges. MRS Bull. 2013, 38, 412–421. [Google Scholar] [CrossRef]
- Marco-Lozar, J.P.; Kunowsky, M.; Carruthers, J.D.; Linares-Solano, A. Gas Storage Scale-up At Room Temperature on High Density Carbon Materials. Carbon 2014, 76, 123–132. [Google Scholar] [CrossRef]
- Casco, M.E.; Martnez-Escandell, M.; Gadea-Ramos, E.; Kaneko, K.; Silvestre-Albero, J.; Rodriguez-Reinoso, F. High-pressure Methane Storage in Porous Materials: Are Carbon Materials in the Pole Position? Chem. Mater. 2015, 27, 959–964. [Google Scholar] [CrossRef]
- Guerra, G.; Daniel, C.; Rizzo, P.; Tarallo, O. Advanced Materials Based on Polymer Cocrystalline Forms. J. Polym. Sci. Part B Polym. Phys. 2012, 50, 305–322. [Google Scholar] [CrossRef]
- Kim, W.-G.; Nair, S. Membranes from Nanoporous 1D and 2D Materials: A Review of Opportunities Developments and Challenges. Chem. Eng. Sci. 2013, 104, 908–924. [Google Scholar] [CrossRef]
- Ouyang, Y.; Shi, H.; Fu, R.; Wu, D. Highly Monodisperse Microporous Polymeric and Carbonaceous Nanospheres with Multifunctional Properties. Sci. Rep. 2013, 3, 1430. [Google Scholar] [CrossRef]
- Zheng, Y.; Liu, J.; Liang, J.; Jaroniec, M.; Qiao, S.Z. Graphitic Carbon Nitride Materials: Controllable Synthesis and Applications in Fuel Cells and Photocatalysis. Energy Environ. Sci. 2012, 5, 6717–6731. [Google Scholar] [CrossRef]
- Rose, M. Nanoporous Polymers: Bridging the Gap Between Molecular and Solid Catalysts. ChemCatChem 2014, 6, 1166–1182. [Google Scholar] [CrossRef]
- Pal, N.; Bhaumik, A. Mesoporous Materials: Versatile Supports in Heterogeneous Catalysis for Liquid Phase Catalytic Transformations. RSC Adv. 2015, 5, 24363–24391. [Google Scholar] [CrossRef]
- Kowalczyk, P.; Solarz, L.; Do, D.D.; Samborski, A.; MacElroy, J.M.D. Nanoscale Tubular Vessels for Storage of Methane at Ambient Temperatures. Langmuir 2006, 22, 9035–9040. [Google Scholar] [CrossRef]
- Yang, C.-M.; Noguchi, H.; Murata, K.; Yudasaka, M.; Hashimoto, A.; Iijima, S.; Kaneko, K. Highly Ultramicroporous Single-walled Carbon Nanohorn Assemblies. Adv. Mater. 2005, 17, 866–870. [Google Scholar] [CrossRef]
- Linares-Solano, A.; Jordá-Beneyto, M.; Kunowsky, M.; Lozano-Castelló, D.; Suárez-García, F.; Cazorla-Amorós, D. Hydrogen storage in carbon materials. In Carbon Materials: Theory and Practice; Terzyk, A.P., Gauden, P.A., Kowalczyk, P., Eds.; Research Signpost: Irvine, CA, USA, 2008; pp. 245–282. [Google Scholar]
- Lim, K.L.; Kazemian, H.; Yaakob, Z.; Daud, W.R.W. Solid-state Materials and Methods for Hydrogen Storage: A Critical Review. Chem. Eng. Technol. 2010, 33, 213–226. [Google Scholar] [CrossRef]
- Marco-Lozar, J.P.; Kunowsky, M.; Surez-Garca, F.; Carruthers, J.D.; Linares, A. Activated Carbon Monoliths for Gas Storage at Room Temperature. Energy Environ. Sci. 2012, 5, 9833–9842. [Google Scholar] [CrossRef]
- Thomas, K.M. Adsorption and Desorption of Hydrogen on Metal-organic Framework Materials for Storage Applications: Comparison with Other Nanoporous Materials. Dalton Trans. 2009, 9, 1487–1505. [Google Scholar] [CrossRef] [PubMed]
- Marco-Lozar, J.P.; Juan-Juan, J.; Surez-Garca, F.; Cazorla-Amors, D.; Linares-Solano, A. MOF-5 and Activated Carbons as Adsorbents for Gas Storage. Int. J. Hydrog. Energy 2012, 37, 2370–2381. [Google Scholar] [CrossRef]
- Peng, Y.; Krungleviciute, V.; Eryazici, I.; Hupp, J.T.; Farha, O.K.; Yildirim, T. Methane Storage in Metal-organic Frameworks: Current Records Surprise Findings and Challenges. J. Am. Chem. Soc. 2013, 135, 11887–11894. [Google Scholar] [CrossRef] [PubMed]
- Diaz, U.; Corma, A. Ordered Covalent Organic Frameworks COFs and PAFs from Preparation to Application. Coord. Chem. Rev. 2016, 311, 85–124. [Google Scholar] [CrossRef]
- Furukawa, H.; Yaghi, O.M. Storage of Hydrogen Methane and Carbon Dioxide in Highly Porous Covalent Organic Frameworks for Clean Energy Applications. J. Am. Chem. Soc. 2009, 131, 8875–8883. [Google Scholar] [CrossRef]
- Sang, S.H.; Furukawa, H.; Yaghi, O.M.; Goddard, W.A. Covalent Organic Frameworks as Exceptional Hydrogen Storage Materials. J. Am. Chem. Soc. 2008, 130, 11580–11581. [Google Scholar] [Green Version]
- Ben, T.; Qiu, S. Porous Aromatic Frameworks: Synthesis Structure and Functions. Cryst. Eng. Commun. 2013, 15, 17–26. [Google Scholar] [CrossRef]
- Beaudoin, D.; Maris, T.; Wuest, J.D. Constructing Monocrystalline Covalent Organic Networks By Polymerization. Nat. Chem. 2013, 5, 830–834. [Google Scholar] [CrossRef] [PubMed]
- Pei, C.; Ben, T.; Qiu, S. Great Prospects for PAF-1 and Its Derivatives. Mater. Horiz. 2015, 2, 11–21. [Google Scholar] [CrossRef]
- Ben, T.; Pei, C.; Zhang, D.; Xu, J.; Deng, F.; Jing, X.; Qiu, S. Gas Storage in Porous Aromatic Frameworks (PAFs). Energy Environ. Sci. 2011, 4, 3991–3999. [Google Scholar] [CrossRef]
- Errahali, M.; Gatti, G.; Tei, L.; Paul, G.; Rolla, G.; Canti, L.; Fraccarollo, A.; Cossi, M.; Comotti, A.; Sozzani, P.; et al. Microporous Hyper-crosslinked Aromatic Polymers Designed for Methane and Carbon Dioxide Adsorption. J. Phys. Chem. C 2014, 118, 28699–28710. [Google Scholar] [CrossRef]
- Ahmed, A.; Babarao, R.; Huang, R.; Medhekar, N.; Todd, B.D.; Hill, M.R.; Thornton, A.W. Porous Aromatic Frameworks Impregnated with Lithiated Fullerenes for Natural Gas Purification. J. Phys. Chem. C 2015, 119, 9347–9354. [Google Scholar] [CrossRef]
- Babarao, R.; Dai, S.; Jiang, D.-E. Functionalizing Porous Aromatic Frameworks with Polar Organic Groups for High-capacity and Selective CO2 Separation: A Molecular Simulation Study. Langmuir 2011, 27, 3451–3460. [Google Scholar] [CrossRef]
- Fu, J.; Wu, J.; Custelcean, R.; Jiang, D.-E. Nitrogen-doped Porous Aromatic Frameworks for Enhanced CO2 Adsorption. J. Colloid Interface Sci. 2015, 438, 191–195. [Google Scholar] [CrossRef]
- Fraccarollo, A.; Canti, L.; Marchese, L.; Cossi, M. Monte Carlo Modeling of Carbon Dioxide Adsorption in Porous Aromatic Frameworks. Langmuir 2014, 30, 4147–4156. [Google Scholar] [CrossRef] [PubMed]
- Dhanalaxmi, K.; Yadav, R.; Kundu, S.K.; Reddy, B.M.; Amoli, V.; Sinha, A.K.; Mondal, J. MnFe2O4 Nanocrystals Wrapped in a Porous Organic Polymer: A Designed Architecture for Water-Splitting Photocatalysis. Chem. Eur. J. 2016, 22, 15639–15644. [Google Scholar] [CrossRef] [PubMed]
- Dhanalaxmi, K.; Singuru, R.; Mondal, S.; Bai, L.; Reddy, B.M.; Bhaumik, A.; Mondal, J. Magnetic nanohybrid decorated porous organic polymer: Synergistic catalyst for high performance levulinic acid hydrogenation. ACS Sustain. Chem. Eng. 2017, 5, 1033–1045. [Google Scholar] [CrossRef]
- Sun, Y.; Webley, P.A. Preparation of activated carbons from corncob with large specific surface area by a variety of chemical activators and their application in gas storage. Chem. Eng. J. 2010, 162, 883–892. [Google Scholar] [CrossRef]
- Krishnan, K.A.; Anirudhan, T. Removal of cadmium(II) from aqueous solutions by steam-activated sulphurised carbon prepared from sugar-cane bagasse pith: Kinetics and equilibrium studies. Water 2003, 29, 147–156. [Google Scholar] [CrossRef]
- Crini, G. Non-conventional low-cost adsorbents for dye removal: A review. Bioresour. Technol. 2006, 97, 1061–1085. [Google Scholar] [CrossRef]
- Leonard, A.D.; Hudson, J.L.; Fan, H.; Booker, R.; Simpson, L.J.; O’Neill, K.J.; Parilla, P.A.; Heben, M.J.; Pasquali, M.; Kittrell, C.; et al. Nano engineered carbon scaffolds for hydrogen storage. J. Am. Chem. Soc. 2009, 131, 723–728. [Google Scholar] [CrossRef] [PubMed]
- Illan-Gomez, M.J.; Garcìa-Garcıìa, A.; Salinas-Martınez de Lecea, C.; Linares-Solano, A. Activated Carbons from Spanish Coals 2: Chemical Activation. Energy Fuels 1996, 10, 1108–1114. [Google Scholar] [CrossRef]
- Bansal, R.C.; Donnet, J.B.; Stoeckli, F. Active Carbon; Marcel Dekker: New York, NY, USA, 1988. [Google Scholar]
- Munoz-Guillena, M.J.; Illan-Gomez, M.J.; Martın-Martınez, A.; Salinas-Martınez de Lecea, C. Activated carbons from Spanish coals 1 Two-stage CO2 activation. Energy Fuels 1992, 6, 9–15. [Google Scholar] [CrossRef]
- Joshi, S.; Adhikari, M.; Pokharel, B.P.; Pradhananga, R.R. Effects of Activating Agents on the Activated Carbons Prepared from Lapsi Seed Stone. Res. J. Chem. Sci. 2013, 3, 19–24. [Google Scholar]
- Hameed, B.H.; Din, A.T.M.; Ahmed, A.L. Adsorption of methylene blue onto bamboo-based activated carbon: Kinetics and equilibrium studies. J. Hazard. Mater. 2007, 141, 819–825. [Google Scholar] [CrossRef]
- Badie, S.G.; Amina, A.A.; Nady, A.F. Modification in adsorption characteristics of activated carbon produced by H3PO4 under flowing gases. Colloids Surf. A Phys. Chem. Eng. Asp. 2007, 299, 79–87. [Google Scholar]
- Onal, Y.; Akmil-Basar, C.; Sarici-Ozdemir, C. Elucidation of the naproxen sodium adsorption onto activated carbon prepared from waste apricot: Kinetic equilibrium and thermodynamic characterization. J. Hazard. Mater. 2007, 148, 727–734. [Google Scholar] [CrossRef]
- Ramakrishnan, K.; Namasivayam, C. Development and Characteristics of Activated Carbons from Jatropha husk an Agro Industrial Solid Waste by Chemical Activation Methods. J. Environ. Eng. Manag. 2009, 19, 173–178. [Google Scholar]
- Yang, K.; Peng, J.; Srinivasakannan, C.; Zhang, L.; Xia, H.; Duan, X. Preparation of high surface area activated carbon from coconut shells using microwave heating. Bioresour. Technol. 2010, 101, 6163–6169. [Google Scholar] [CrossRef] [PubMed]
- Qiang, Z.; Gurkan, B.; Ma, J.; Liu, X.; Guo, Y.; Cakmak, M.; Cavicchi, K.A.; Vogt, B.D. Roll-to-roll fabrication of high surface area mesoporous carbon with process-tunable pore texture for optimization of adsorption capacity of bulky organic dyes. Microporous Mesoporous Mater. 2016, 227, 57–64. [Google Scholar] [CrossRef] [Green Version]
- Qiang, Z.; Liu, X.; Zou, F.; Cavicchi, K.A.; Zhu, Y.; Vogt, B.D. Bimodal Porous Carbon-Silica Nanocomposites for Li-Ion Batteries. J. Phys. Chem. C 2017, 121, 16702–16709. [Google Scholar] [CrossRef]
- Hu, Z.; Srinivasan, M.P. Preparation of High-surface-area Activated Carbons from Coconut Shell. Microporous Mesoporous Mater. 1999, 27, 11–18. [Google Scholar] [CrossRef]
- Pandey, S.S.; Gerard, M.; Sharma, A.L.; Malhotra, B.D. Thermal Analysis of Chemically Synthesized Polyemeraldine Base. J. Appl. Polym. Sci. 2000, 75, 149–155. [Google Scholar] [CrossRef]
- Modak, A.; Bhaumik, A. Porous Carbon Derived Via KOH Activation of a Hypercrosslinked Porous Organic Polymer for Efficient CO2 CH4 H2 Adsorptions and High CO2/N2 Selectivity. J. Solid State Chem. 2015, 232, 157–162. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, B.; Williams, K.; Gao, W.-Y.; Ma, S.A. New Microporous Carbon Material Synthesized Via Thermolysis of a Porous Aromatic Framework Embedded with An Extra Carbon Source for Low-pressure CO2 Uptake. Chem. Commun. 2013, 49, 10269–10271. [Google Scholar] [CrossRef]
- Ben, T.; Li, Y.; Zhu, L.; Zhang, D.; Cao, D.; Xiang, Z.; Yao, X.; Qiu, S. Selective Adsorption of Carbon Dioxide by Carbonized Porous Aromatic Framework (PAF). Energy Environ. Sci. 2012, 5, 8370–8376. [Google Scholar] [CrossRef]
- Li, Y.; Ben, T.; Zhang, B.; Fu, Y.; Qiu, S. Ultrahigh Gas Storage Both at Low and High Pressures in KOH-activated Carbonized Porous Aromatic Frameworks. Sci. Rep. 2013, 3, 2420. [Google Scholar] [CrossRef] [PubMed]
- Dawson, R.; Stckel, E.; Holst, J.R.; Adams, D.J.; Cooper, A.I. Microporous Organic Polymers for Carbon Dioxide Capture. Energy Environ. Sci. 2011, 4, 4239–4245. [Google Scholar] [CrossRef]
- Dawson, R.; Ratvijitvech, T.; Corker, M.; Laybourn, A.; Khimyak, Y.A.; Cooper, A.I.; Adams, D.J. Microporous Copolymers for Increased Gas Selectivity. Polym. Chem. 2012, 3, 2034–2038. [Google Scholar] [CrossRef]
- Wood, C.D.; Bien, T.; Trewin, A.; Hongjun, N.; Bradshaw, D.; Rosseinsky, M.J.; Khimyak, Y.Z.; Campbell, N.L.; Kirk, R.; Stöckel, E.; et al. Hydrogen Storage in Microporous Hypercrosslinked Organic Polymer Networks. Chem. Mater. 2007, 19, 2034–2048. [Google Scholar] [CrossRef]
- Luo, Y.; Li, B.; Wang, W.; Wu, K.; Tan, B. Hypercrosslinked Aromatic Heterocyclic Microporous Polymers: A New Class of Highly Selective CO2 Capturing Materials. Adv. Mater. 2012, 24, 5703–5707. [Google Scholar] [CrossRef]
- Mondal, J.; Kundu, S.K.; Hung Ng, W.K.; Singuru, R.; Borah, P.; Hirao, H.; Zhao, Y.; Bhaumik, A. Fabrication of Ruthenium Nanoparticles in Porous Organic Polymers: Towards Advanced Heterogeneous Catalytic Nanoreactors. Chem. Eur. J. 2015, 21, 19016–19027. [Google Scholar] [CrossRef]
- Srinivasu, P.; Venkanna, D.; Kantam, M.L.; Tang, J.; Bhargava, S.K.; Aldalbahi, A.; Wu, K.C.; Yamauchi, Y. Ordered hexagonal mesoporous aluminosilicates and their application in ligand-free synthesis of secondary amines. ChemCatChem 2015, 7, 747–751. [Google Scholar] [CrossRef]
- Canti, L.; Fraccarollo, A.; Gatti, G.; Errahali, M.; Marchese, L.; Cossi, M. An atomistic model of a disordered nanoporous solid: Interplay between Monte Carlo simulations and gas adsorption experiments. AIP Adv. 2017, 7, 045013. [Google Scholar] [CrossRef] [Green Version]
- Lozano-Castello, D.; Calo, J.M.; Cazorla-Amoros, D.; Linares-Solano, A. Carbon activation with KOH as explored by temperature programmed techniques and the effects of hydrogen. Carbon 2007, 45, 2529–2536. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, L.; Li, F.; Yu, R.; Jin, C. Structural evolution in the graphitization process of activated carbon by high-pressure sintering. Carbon 2009, 47, 744–751. [Google Scholar] [CrossRef]
- Tuinstra, F.; Koenig, J.L. Raman spectrum of graphite. J. Chem. Phys. 1970, 53, 1126–1130. [Google Scholar] [CrossRef]
- Neimark, A.V.; Lin, Y.; Ravikovitch, P.I.; Thommes, M. Quenched Solid Density Functional Theory and Pore Size Analysis of Micro-mesoporous Carbons. Carbon 2009, 47, 1617–1628. [Google Scholar] [CrossRef]
- Yang, S.J.; Im, J.H.; Nishihara, H.; Jung, H.; Lee, K.; Kyotani, T.; Park, C.R. General Relationship between Hydrogen Adsorption Capacities at 77 and 298 K and Pore Characteristics of the Porous Adsorbents. J. Phys. Chem. C 2012, 116, 10529–10540. [Google Scholar] [CrossRef]
- Presser, V.; McDonough, J.; Yeon, S.-H.; Gogotsi, Y. Effect of pore size on carbon dioxide sorption by carbide derived carbon. Energy Environ. Sci. 2011, 4, 3059–3066. [Google Scholar] [CrossRef]
- Jorda-Beneyto, M.; Suarez-Garcia, F.; Lozano-Castello, D.; Cazorla-Amoros, D.; Linares-Solano, A. Hydrogen storage on chemically activated carbons and carbon nanomaterials at high pressures. Carbon 2007, 45, 293–303. [Google Scholar] [CrossRef]
- Yeon, S.H.; Knoke, I.; Gogotsi, Y.; Fischer, J.E. Enhanced volumetric hydrogen and methane storage capacity of monolithic carbide-derived carbon. Microporous Mesoporous Mater. 2010, 131, 423–428. [Google Scholar] [CrossRef]
- Jorda-Beneyto, M.; Lozano-Castello, D.; Suarez-Garcia, F.; Cazorla-Amoros, D.; Linares-Solano, A. Advanced activated carbon monoliths and activated carbons for hydrogen storage. Microporous Mesoporous Mater. 2008, 112, 235–242. [Google Scholar] [CrossRef]
- Zacharia, R.; Cossement, D.; Lafi, L.; Chahine, R. Volumetric hydrogen sorption capacity of monoliths prepared by mechanical densification of MOF-177. J. Mater. Chem. 2010, 20, 2145–2151. [Google Scholar] [CrossRef]
- Ganesan, A.; Shaijumon, M.M. Activated graphene-derived porous carbon with exceptional gas adsorption properties. Microporous Mesoporous Mater. 2016, 220, 21–27. [Google Scholar] [CrossRef]
- Coromina, H.M.; Walsh, D.A.; Mokaya, R. Biomass-derived activated carbon with simultaneously enhanced CO2 uptake for both pre and post combustion capture applications. J. Mater. Chem. A 2016, 4, 280–289. [Google Scholar] [CrossRef]
- Panella, B.; Hirscher, M.; Roth, S. Hydrogen adsorption in different carbon nanostructures. Carbon 2005, 43, 2209–2214. [Google Scholar] [CrossRef]
- Wang, J.; Senkovsk, I.; Kaskel, S.; Liu, Q. Chemically activated fungi-based porous carbons for hydrogen storage. Carbon 2014, 75, 371–380. [Google Scholar] [CrossRef]
- Wang, J.; Oschatz, M.; Biemelt, T.; Borchardt, L.; Senkovska, I.; Lohe, M.R.; Kaskel, S. Synthesis characterization and hydrogen storage capacities of hierarchical porous carbide derived carbon monolith. J. Mater. Chem. 2012, 22, 23893–23899. [Google Scholar] [CrossRef]
- Kockrick, E.; Schrage, C.; Borchardt, L.; Klein, N.; Rose, M.; Senkovska, I.; Kaskel, S. Ordered mesoporous carbide derived carbons for high pressure gas storage. Carbon 2010, 48, 1707–1717. [Google Scholar] [CrossRef]
- Wrobel-Iwaniec, I.; Dıez, N.; Gryglewicz, G. Chitosan-based highly activated carbons for hydrogen storage. Int. J. Hydrog. Energy 2015, 40, 5788–5796. [Google Scholar] [CrossRef]
- Himeno, S.; Komatsu, T.; Fujita, S. High-pressure adsorption equilibria of methane and carbon dioxide on several activated carbons. J. Chem. Eng. Data 2015, 50, 369–376. [Google Scholar] [CrossRef]
- Gandara, F.; Furukawa, H.; Lee, S.; Yaghi, O.M. High Methane Storage Capacity in Aluminum Metal−Organic Frameworks. J. Am. Chem. Soc. 2014, 136, 5271–5274. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.J.; Jung, H.; Kim, T.; Park, C.R. Recent advances in hydrogen storage technologies based on nanoporous carbon materials. Prog. Nat. Sci. Mater. Int. 2012, 22, 631–638. [Google Scholar] [CrossRef] [Green Version]
- Casco, M.E.; Martinez-Escandell, M.; Gadea-Ramos, E.; Kaneko, K.; Silvestre-Albero, J.; Rodriguez-Reinoso, F. Very high methane uptake on activated carbons prepared from mesophase pitch: A compromise between microporosity and bulk density. Carbon 2015, 93, 11–21. [Google Scholar] [CrossRef] [Green Version]
Sample | SSA BET (m2g−1) a | Volume TOTAL (cm3g−1) b | Volume MICRO (cm3g−1) c | Volume MESO (cm3g−1) c | ||
---|---|---|---|---|---|---|
<7 Å | 7 < Å< 20 | Total | ||||
UPO8 | 1435 | 1.09 | -- | 0.31 | 0.31 | 0.78 |
UPO8-380 | 1528 | 1.04 | 0.14 | 0.27 | 0.41 | 0.63 |
UPO16 | 1289 | 0.96 | 0.09 | 0.22 | 0.31 | 0.65 |
UPO16-380 | 1513 | 0.99 | 0.14 | 0.28 | 0.42 | 0.57 |
Curve | Sample | ID/IG |
---|---|---|
a | KUPO8-1-750 | 1.81 |
b | KUPO8-1-800 | 1.78 |
c | KUPO16-1-800 | 1.51 |
d | KUPO8-2-750 | 1.35 |
e | KUPO8-2-800 | 1.34 |
f | KUPO16-2-750 | 1.27 |
g | KUPO8-3-750 | 1.66 |
h | KUPO8-3-800 | 1.65 |
i | KUPO16-3-800 | 1.45 |
Sample | SSABET (m2g−1) a | Vtotal (cm3g−1) b | Vmicro (cm3g−1) c | Vmeso (cm3g−1) c | ||
---|---|---|---|---|---|---|
<7 Å | 7 < Å< 20 | Total | ||||
UPO8 | 1435 | 1.09 | -- | 0.31 | 0.31 | 0.78 |
UPO16 | 1289 | 0.96 | 0.09 | 0.22 | 0.31 | 0.65 |
KUPO8-1-750 | 2500 | 1.03 | -- | 0.93 | 0.93 | 0.11 |
KUPO8-1-800 | 2400 | 1.19 | -- | 0.84 | 0.84 | 0.35 |
KUPO16-1-800 | 2700 | 1.20 | -- | 0.98 | 0.98 | 0.22 |
KUPO8-2-750 | 2527 | 1.09 | -- | 0.95 | 0.95 | 0.14 |
KUPO8-2-800 | 2318 | 1.21 | 0.14 | 0.50 | 0.64 | 0.57 |
KUPO16-2-750 | 2975 | 1.24 | -- | 1.12 | 1.12 | 0.12 |
KUPO8-3-750 | 2562 | 1.20 | 0.24 | 0.54 | 0.78 | 0.42 |
KUPO8-3-800 | 2666 | 1.12 | -- | 0.99 | 0.99 | 0.13 |
KUPO16-3-800 | 2950 | 1.30 | -- | 1.07 | 1.07 | 0.23 |
Material | CH4 Uptake, 298 K 35 bar (100 bar) | H2 Uptake, 77 K 30 bar | CO2 Uptake, 298 K 40 bar |
---|---|---|---|
Wt % | Wt % | Wt % | |
KUPO16-2-750 | 15.1 (17.5) | 4.7 | 51.3 |
K-PAFs [57] | 8.7–17.1 | 3.5–6.2 | 31.5–56.9 |
GDC [75] | 13.2–15.3 | 3.73–3.82 (10 bar) | 41.0–48.0 (20 bar) |
Maxsorb [8] | 10.7 (12.3) | 5.3 (40 bar) [79] | 52.4 (50 bar) [82] |
AX21 | 14.5 [83] | 4.8 (40 bar) [84] | 49.7 (20 bar) [76] |
Packing Pressure (tons cm−2) | Time (min) | rpack (g cm−3) |
---|---|---|
0.75 | 10 | 0.35 |
0.75 | 180 | 0.41 |
15.0 | 10 | 0.47 |
Sample | SSABET (m2∙g−1) | Vtotal (cm3∙g−1) | Vmicro (cm3∙g−1) | Vmeso (cm3∙g−1) |
---|---|---|---|---|
As-synthesized | 2975 | 1.24 | 1.12 | 0.12 |
After compression | 2578 | 1.09 | 0.97 | 0.12 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gatti, G.; Errahali, M.; Tei, L.; Cossi, M.; Marchese, L. On the Gas Storage Properties of 3D Porous Carbons Derived from Hyper-Crosslinked Polymers. Polymers 2019, 11, 588. https://doi.org/10.3390/polym11040588
Gatti G, Errahali M, Tei L, Cossi M, Marchese L. On the Gas Storage Properties of 3D Porous Carbons Derived from Hyper-Crosslinked Polymers. Polymers. 2019; 11(4):588. https://doi.org/10.3390/polym11040588
Chicago/Turabian StyleGatti, Giorgio, Mina Errahali, Lorenzo Tei, Maurizio Cossi, and Leonardo Marchese. 2019. "On the Gas Storage Properties of 3D Porous Carbons Derived from Hyper-Crosslinked Polymers" Polymers 11, no. 4: 588. https://doi.org/10.3390/polym11040588
APA StyleGatti, G., Errahali, M., Tei, L., Cossi, M., & Marchese, L. (2019). On the Gas Storage Properties of 3D Porous Carbons Derived from Hyper-Crosslinked Polymers. Polymers, 11(4), 588. https://doi.org/10.3390/polym11040588