# Topological Methods for Polymeric Materials: Characterizing the Relationship Between Polymer Entanglement and Viscoelasticity

^{1}

^{2}

^{3}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Characterizing Polymer Entanglement

## 3. Polymeric Materials with Weave-like Entanglements

## 4. Simulation of the Polymers

## 5. Bulk Mechanical Responses

#### 5.1. Complex Modulus

#### 5.2. Conformational Analysis

#### 5.3. Topology and Mechanical Responses

## 6. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Doi, M.; Edwards, S.F. The Theory of Polymer Dynamics; Clarendon Press: Oxford, UK, 1986. [Google Scholar]
- de Gennes, P.G. Scaling Concepts in Polymer Physics; Cornell University Press: Ithaca, NY, USA, 1979. [Google Scholar]
- Rubinstein, M.; Colby, R. Polymer Physics; Oxford University Press: Oxford, UK, 2003. [Google Scholar]
- Bird, R.; Curtiss, C.F.; Armstrong, R.C.; Hassager, O. Dynamics of Polymeric Liquids: Volume I Fluid Mechanics; Wiley-Interscience: Hoboken, NJ, USA, 1987. [Google Scholar]
- Bird, R.; Curtiss, C.F.; Armstrong, R.C.; Hassager, O. Dynamics of Polymeric Liquids: Volume II Kinetic Theory; Wiley-Interscience: Hoboken, NJ, USA, 1987. [Google Scholar]
- Edwards, F. Statistical mechanics with topological constraints: I. Proc. Phys. Soc.
**1967**, 91, 513–519. [Google Scholar] [CrossRef] - Edwards, F. Statistical mechanics with topological constraints: II. J. Phys. A Gen. Phys.
**1968**, 1, 15–28. [Google Scholar] [CrossRef] - Kremer, K.; Grest, G.S. Dynamics of entangled linear polymer melts: A molecular-dynamics simulation. J. Chem. Phys.
**1990**, 92, 5057–5086. [Google Scholar] [CrossRef] - Kim, J.M.; Keffer, D.J.; Edwards, B.J.; Kröger, M. Rheological and entanglement characterisitcs of linear-chain polyethylene liquids in planar Cuette and planar elongational flow. J. Non-Newotonian Fluid Mech.
**2008**, 152, 168–183. [Google Scholar] [CrossRef] - Baig, C.; Mavrantzas, V.G.; Kröger, M. Flow effects on the melt structure and entanglement network of linear polymer melts: Results from a nonequilibrium molecular dynamics simulation study of a polyethylene melt in steady shear. Macromolecules
**2010**, 43, 6996. [Google Scholar] - Hoy, R.S.; Foteinopoulou, K.; Kröger, M. Topological analysis of polymeric melts: Chain-length effects and fast-converging estimators for entanglement length. Phys. Rev. E
**2009**, 80, 031803. [Google Scholar] [CrossRef] [PubMed] - Shanbhag, S.; Kröger, M. Primitive path networks generated by annealing and geometrical methods: Insights into differences. Macromolecules
**2007**, 40, 2897. [Google Scholar] [CrossRef] - Kröger, M.; Ramirez, J.; Öttinger, H.C. Projection from an atomistic chain contour to its primitive path. Polymer
**2002**, 43, 477–487. [Google Scholar] [CrossRef] - Stephanou, P.S.; Baig, C.; Tsolou, G.; Mavrantzas, V.G.; Kröger, M. Quantifying chain reptation in entangled polymer melts. J. Chem. Phys.
**2010**, 132, 124904. [Google Scholar] [CrossRef] [PubMed] - Liu, C.; He, J.; Ruymbeke, E.; Keunings, R.; Bailly, C. Evaluation of different methods for the determination of the plateau modulus and the entanglement molecular weight. Polymer
**2006**, 47, 4461–4479. [Google Scholar] [CrossRef] [Green Version] - Likhtman, A.E.; McLeish, T.C.B. Quantitative theory for linear dynamics of linear entangled polymers. Macromolecules
**2002**, 35, 6332–6343. [Google Scholar] [CrossRef] - Everaers, R. Topological versus rheological entanglement length in primitive-path analysis protocols, tube models, and slip-link models. Phys. Rev. E
**2012**, 86, 022801. [Google Scholar] [CrossRef] [PubMed] - Desai, P.S.; Kang, B.; Katzarova, M.; Hall, R.; Huang, Q.; Lee, S.; Shivokhnin, M.; Chang, T.; Venerus, D.C.; Mays, J.; et al. Challenging tube and slip-link models: predicting the linear rheology of blends of well-characterized star and linear 1,4-polybutadienes. Macromolecules
**2016**, 49, 4964–4977. [Google Scholar] [CrossRef] - Snijkers, F.; Pasquino, R.; Olmsted, P.D.; Vlassopoulos, D. Perspectives on the viscoelasticity and flow behavior of entangled linear and branched polymers. J. Phys. Cpndens. Matter
**2015**, 27, 473002. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Unidad, H.J.; Goad, M.A.; Bras, A.R.; Zamponi, M.; Faust, R.; Allgaier, J.; Pyckhout-Hintzen, W.; Wischnewski, A.; Richter, D.; Fetters, L.J. Consequences of increasing packing length of the dynamics of polymer melts. Macromolecules
**2015**, 48, 6638–6645. [Google Scholar] [CrossRef] - Fetters, L.J.; Lohse, D.J.; Milner, S.T.; Graessly, W.W. Packing length influence in linear polymer melts on the entanglement, critical, and reptation molecular weights. Macromolecules
**1999**, 32, 6847. [Google Scholar] [CrossRef] - Sussman, D.M.; Schweizer, K.S. Microscopic theory of entangled polymer melt dynamics: flexible chains as primitive-path random walks and supercoarse grained needles. PRL
**2012**, 109, 168306. [Google Scholar] [CrossRef] [PubMed] - Rubinstein, M.; Helfand, E.J. Statistics of Entanglements of Polymers: Concentration Effects. J. Chem. Phys.
**1984**, 82, 2477–2483. [Google Scholar] [CrossRef] - Jain, A.; Dünweg, B.; Prakash, R. Dynamic crossover scaling in polymer solutions. PRL
**2012**, 109, 088302. [Google Scholar] [CrossRef] [PubMed] - Everaers, R.; Sukumaran, S.K.; Grest, G.S.; Svaneborg, C.; Sivasubramanian, A.; Kremer, K. Rheology and microscopic topology of entangled polymeric liquids. Science
**2004**, 303, 823. [Google Scholar] [CrossRef] [PubMed] - Kröger, M. Shortest multiple disconnected path for the analysis of entanglements in two- and three-dimensional polymeric systems. Comput. Phys. Commun.
**2005**, 168, 209–232. [Google Scholar] [CrossRef] - Tzoumanekas, C.; Theodorou, D.N. Topological analysis of linear polymer melts: A statistical approach. Macromolecules
**2006**, 39, 4592–4604. [Google Scholar] [CrossRef] - Bisbee, W.; Qin, J.; Milner, S.T. Finding the tube with isoconfigurational averaging. Macromolecules
**2011**, 44, 8972–8980. [Google Scholar] [CrossRef] - Foteinopoulou, K.; Karayiannis, N.C.; Laso, M.; Kröger, M.; Mansfield, L. Universal scaling, entanglements and knots of model chain molecules. Phys. Rev. Lett.
**2008**, 101, 265702. [Google Scholar] [CrossRef] [PubMed] - Qin, J.; Milner, S.T. Counting polymer knots to find the entanglement length. Soft Matter
**2011**, 7, 10676–10693. [Google Scholar] [CrossRef] - Kuei, S.; Slowicka, A.M.; Ekiel-Jezewska, M.L.; Wajnryb, E.; Stone, H.A. Dynamics and topology of a flexible chain: Knots in steady shear flow. New J. Phys.
**2015**, 17, 053009. [Google Scholar] [CrossRef] - Everaers, R.; Kremer, K. Topological Interactions in Model Polymer Networks. Phys. Rev. E
**1996**, 53, R37–R40. [Google Scholar] [CrossRef] - Millett, K.C.; Dobay, A.; Stasiak, A. Linear random knots and their scaling behavior. Macromolecules
**2005**, 38, 601–606. [Google Scholar] [CrossRef] - Morton, H.R.; Grishanov, S. Doubly periodic textile structures. J. Knot Theory Ramif.
**2009**, 18, 1597–1622. [Google Scholar] [CrossRef] - Panagiotou, E. The linking number in systems with periodic boundary conditions. J. Comput. Phys.
**2015**, 300, 533–573. [Google Scholar] [CrossRef] - Panagiotou, E.; Kröger, M.; Millett, K.C. Writhe and mutual entanglement combine to give the entanglement length. Phys. Rev. E
**2013**, 88, 062604. [Google Scholar] [CrossRef] [PubMed] - Panagiotou, E.; Kröger, M. Pulling-force-induced elongation and alignment effects on entanglement and knotting characteristics of linear polymers in a melt. Phys. Rev. E
**2014**, 90, 042602. [Google Scholar] [CrossRef] [PubMed] - Panagiotou, E.; Tzoumanekas, C.; Lambropoulou, S.; Millett, K.C.; Theodorou, D.N. A Study of the Entanglement in Systems with Periodic Boundary Conditions. Prog. Theor. Phys. Suppl.
**2011**, 191, 172–181. [Google Scholar] [CrossRef] [Green Version] - Panagiotou, E.; Plaxco, K.W. A topological study of protein folding kinetics. arXiv, 2018; arXiv:1812.08721. [Google Scholar]
- Lees, A.W.; Edwards, S. The computer study of transport processes under extreme conditions. J. Phys. C Solid State Phys.
**1972**, 5, 1921. [Google Scholar] [CrossRef] - Gauss, K.F. Werke; Kgl. Gesellsch. Wiss.: Göttingen, Germany, 1877. [Google Scholar]
- Evans, M.E.; Robins, V.; Hyde, S.T. Periodic entanglement II: weavings from hyperbolic line patterns. Acta Chryst.
**2013**, A69, 262–275. [Google Scholar] [CrossRef] - Liu, Y.; O’Keeffe, M.; Treacy, M.M.J.; Yaghi, O.M. The geometry of periodic knots, polycatenanes and weaving from a chemical perspective: A library for reticular chemistry. Chem. Soc. Rev.
**2018**, 47, 4642–4664. [Google Scholar] [CrossRef] [PubMed] - Gardiner, C.W. Handbook of Stochastic Methods; Series in Synergetics; Springer: Berlin, Germany, 1985. [Google Scholar]
- Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys.
**1995**, 117, 1–19. [Google Scholar] [CrossRef] - Wang, Y.; Sigurdsson, J.K.; Atzberger, P.J. Fluctuating Hydrodynamics Methods for Dynamic Coarse-Grained Implicit-Solvent Simulations in LAMMPS. SIAM J. Sci. Comput.
**2016**, 38, S62–S77. [Google Scholar] [CrossRef] - Vladkov, M.; Barrat, J. Linear and nonlinear viscoelasticity of a model unentangled polymer melt: Molecular dynamics and rouse modes analysis. Macromol. Theory Simul.
**2006**, 15, 252–262. [Google Scholar] [CrossRef] - Irving, J.H.; Kirkwood, J.G. The statistical mechanical theory of transport processes. J. Chem. Phys.
**1950**, 18, 817–829. [Google Scholar] [CrossRef] - Edwards, S.F.; Takano, H.; Terentjev, E.M. Dynamic mechanical response of polymer networks. J. Chem. Phys.
**2000**, 113, 5531. [Google Scholar] [CrossRef] [Green Version] - Barlow, A.J.; Egrinsav, A.; Lamb, J. Viscoelastic relaxation in poly-1-butenes of low molecular weight. Proc. R. Soc. Lond. A
**1967**, 300, 356–372. [Google Scholar] - Rosa, M.E.; Winter, H.H. The effect of entanglement on the rheological behavior of polybutadiene critical gels. Rheo. Acta
**1994**, 33, 220–237. [Google Scholar] [CrossRef] - Hyun, K.; Kim, S.H.; Hyun Ahn, K.; Lee, S.J. Large amplitude oscillatory shear as a way to classify the complex fluids. J. Non Newtonian Fluid Mech.
**2002**, 107, 51–65. [Google Scholar] [CrossRef] - Trappe, V.; Weitz, D.A. Scaling of the viscoelasticity of weakly attractive particles. Phys. Rev. Lett.
**2000**, 85, 449–452. [Google Scholar] [CrossRef] [PubMed] - Lieu, C.; Durairaj, R.; Ramesh, S. Rheological studies of PMMA-PVC based polymer blend electrolytes with LiTFSI as doping salt. PLoS ONE
**2014**, 9, e102815. [Google Scholar] - Ross-Murphy, S.B.; McEvoy, H. Fundamentals of hydrogels and gelatin. Br. Polym. J.
**1986**, 18, 2–7. [Google Scholar] [CrossRef] - Clark, A.H.; Ross-Murphy, S.B. Structural and mechanical properties of biopolymer gels. Adv. Poly. Sci.
**1987**, 83, 57–192. [Google Scholar] - Mortazavi, S.A. Extended rheology sweep: A more realistic rheological approach to investigate the process of mucoadhesive polymer-mucus gel chain interpenetration. Iran. Pol. J.
**2003**, 12, 413–420. [Google Scholar] - Krajina, B.A.; Zhu, A.; Heilshort, S.C.; Spakowitz, A.J. Active DNA olympic hydrogels driven by topoisomerase activity. Phys. Rev. Lett.
**2018**, 121, 148001. [Google Scholar] [CrossRef] [PubMed] - Lieleg, O.; Schmoller, K.M.; Claessens, M.M.A.E.; Bausch, A.R. Cytoskeletal polymer networks: Viscoelastic properties are determined by the microscopic interaction potential of cross-links. Biop. J.
**2009**, 96, 4725–4732. [Google Scholar] [CrossRef] [PubMed] - Kim, T.; Hwang, W.; Lee, H.; Kamm, R.D. Computational analysis of viscioelastic properties of crosslinked actin networks. PLoS Comput. Biol.
**2009**, 5, e1000439. [Google Scholar] [CrossRef] [PubMed] - Mason, T.G.; Dhople, A.; Wirtz, D. Linear viscoelastic moduli of concentrated DNA solutions. Macromolecules
**1998**, 31, 3600–3603. [Google Scholar] [CrossRef] - Wilson, M.; Rabinovitch, A.; Baljon, A.R.C. Computational study of the structure and rheological properties of self-associating polymer networks. Macromolecules
**2015**, 48, 6313–6320. [Google Scholar] [CrossRef] - Szántó, L.; Vogt, R.; Meier, J.; Auhl, D.; Van Ruymbeke, E.; Friedrich, C. Entanglement relaxation time of polyethylene melts from high-frequency rheometry in the mega-hertz range. J. Rheol.
**2017**, 61, 1023. [Google Scholar] - Saito, S.; Hashimoto, T.; Morfin, I.; Lindner, P.; Boué, F.; Pine, D.J. Phase separation in a polymer solution induced by theady and large amplitude oscillatory shear flow. Macromolecules
**2003**, 36, 3745–3748. [Google Scholar] [CrossRef] - Shen, Z.; Röding, M.; Kröger, M.; Li, Y. Carbon nanotube length governs the viscoelasticity and permeability of buckypaper. Polymers
**2017**, 9, 9040115. [Google Scholar] - Anogiannakis, S.; Tzoumanekas, C.; Theodorou, D.N. Microscopic description of entanglements in Polyethylene networks and melts. Macromolecules
**2012**, 45, 9475–9492. [Google Scholar] [CrossRef] - Kapnistos, M.; Lang, M.; Vlassopoulos, D.; Pyckhout-Hintzen, W.; Richter, D.; Cho, D.; Chang, T.; Rubinstein, M. Unexpected power-law stress relaxation of entangled ring polymers. Nat. Mater.
**2008**, 7, 997–1002. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Tsalikis, D.G.; Mavrantzas, V.G. Threading of ring poly(ethylene oxide) molecules by linear chains in the melt. ACS Macro Lett.
**2014**, 3, 763–766. [Google Scholar] [CrossRef] - Paturej, J.; Sheiko, S.S.; Panyukov, S.; Rubinstein, M. Molecular structure of bottlebrush polymers in melts. Sci. Adv.
**2016**, 2, e1601478. [Google Scholar] [CrossRef] [PubMed] [Green Version]

**Figure 1.**The Gauss linking integral between two curves measures the degree to which they entangle, it is a real number that varies continuously with the chain coordinates for open chains, and it is an integer topological invariant for closed chains. Similarly, the Writhe (the Gauss linking integral over one curve) measures the degree to which a curve entangles with itself and varies continuously with chain coordinates.

**Figure 2.**We consider polymeric chains entangled with weave-like topologies. The weave0 (w0) denotes case with aligned chains, weaveI (wI) the case with smaller density of orthogonal and non-interlaced chains, weaveII (wII) the case with larger density of orthogonal and non-interlaced chains, and weaveIII (wIII) the case with alternating interlaced chains.

**Figure 3.**We show the entaglements of the polymer chains of wIII. The weave wIII has a topology with alternating interlaced chains. We see the chains in the x direction which alternatingly go over and under chains in the perpendicular y direction. We show one chain in the x-direction (orange curve) that can be seen locally to meet with three chains in the perpendicular y direction.

**Figure 4.**In Lees–Edwards boundary conditions, a monomer that exits the cell in a direction perpendicular to the shear direction will re-enter from the opposite face at position shifted by $\pm L\left(t\right)\phantom{\rule{3.33333pt}{0ex}}mod\phantom{\rule{0.277778em}{0ex}}{L}_{0}$.

**Figure 5.**Polymer Weave Frequency Response: Dynamic Moduli. The Elastic Storage and Viscous Loss Moduli of the infinite chain weaves are shown left and those of the open chain weaves right. The infinite weaves behave like crosslinked polymers with a primarily elastic behavior throughout the range of frequencies simulated. The exponents 1/2 and 1/4 are similar to those in the Rouse model [49]. The open weaves transition from an elastic to a viscous behavior as frequency is varied. The exponents 3/4 and 3/2 indicate the predicted scaling for semi-dilute solutions of semi-flexible chains and for the BEL model respectively [50]. The slope increases with decreasing topological complexity.

**Figure 6.**Polymer Weave Frequency Response: Loss Tangent. The infinite systems behave like crosslinked polymers with a loss tangent less than 1 at all frequencies. The open chains transition from a liquid-like behavior to that of a solid-like behavior as the frequency increases. The inset plot shows the log-log plot for open chains. These results show that the crossover frequency increases with decreasing topological complexity. Similarly, the slope of decrease increases with decreasing topological complexity.

**Figure 7.**Polymer configurations subject to oscillatory shear. Configurations at the end of simulations for the closed chain and open chain systems. In both cases, the chains tend to form bundles. By forming tubes of larger radius the chains decrease their individual deformation. For weave0, the open chains can significantly rearrange their conformations to those of random coils and the system becomes inhomogeneous, disconnected accross the periodic boundary. As the entanglement complexity and density increases, the open chains cannot fully escape their original conformations, forming tubular connected domains (weaveI), lamellar structures (weaveI) and even retain entanglement percolation in three dimensions (weaveIII).

**Figure 8.**Writhe and Loss Tangent of open chains for small frequencies of oscillation (frequencies corresponding to periods $T>6{\tau}_{D}$). We find a linear behavior of the Writhe as a function of the Loss Tangent. The data points corresponding to the different weaves form clusters. As the topological complexity of the weave decreases both the Writhe and Loss Tangent increase.

**Figure 9.**(

**Left**) Writhe and ${G}_{2}/\omega $ for open weaves at small frequencies (log-log plot). The viscosity can be obtained as the limit $\eta ={lim}_{\omega \to 0}{G}_{2}\left(\omega \right)/\omega $. We find an indication that the Writhe decreases with viscosity, while Z shows the opposite relation to viscosity [10]. (

**Right**) Periodic Linking Number as a function of ${G}_{1}$ for open chains for small frequencies (log-log plot). The equilibrium modulus can be obtained as the limit ${G}_{eq}={lim}_{\omega \to 0}{G}_{1}\left(\omega \right)$. We find an indication that ${G}_{eq}$ increases with increasing linking, similar to what was reported for rings in [32].

**Figure 10.**Periodic Linking Number and Loss Tangent of open systems for small frequencies of oscillation (corresponding to periods $T>6{\tau}_{D}$). We find that the responses corresponding to the different weaves form clusters. The Periodic Linking Number increases with weave complexity and decreases with loss tangent.

**Figure 11.**The ratio of the Periodic Linking Number over the Writhe as a function of the loss tangent for open systems at low frequencies. We see that the ratio $\langle |L{K}_{P}|\rangle /\langle \left|Wr\right|\rangle $ decreases with the loss tangent.

**Table 1.**Densities associated with the polymeric weaves shown in Figure 2.

Weave | Topology | Density | MW (open) |
---|---|---|---|

W0 | parallel, non-interlaced | 0.0625 (15 amu/nm${}^{3}$) | 20 ${m}_{0}$ |

WI | orthogonal (non interl.) | 0.1875 (45 amu/nm${}^{3}$) | 20 ${m}_{0}$ |

WII | orthogonal (non interl.) | 0.33 (80 amu/nm${}^{3}$) | 15 ${m}_{0}$ |

WIII | alternating interlaced | 0.35 (84 amu/nm${}^{3}$) | 21–17 ${m}_{0}$ |

**Table 2.**Parameterization for the polymer weave models. These parametrizations (and Table 3), are chosen for relatively stiff polymers exhibiting worm-like chain responses for polymeric solutions and melts.

Parameter | Description | Value |
---|---|---|

$\sigma $ | monomer radius | 1.0 nm |

$\u03f5$ | energy scale | 2.5 amu·nm${}^{2}$/ps${}^{2}$ |

${m}_{0}$ | reference mass | 1 amu |

${w}_{c}$ | energy potential width | $2.5\sigma $ |

m | monomer mass | 240 ${m}_{0}$ |

$\tau $ | LJ-time-scale | $\sigma \sqrt{{m}_{0}/\u03f5}$ = 0.6 ps |

${k}_{B}T$ | thermal energy | 1.0 $\u03f5$ |

$\rho $ | solvent mass density | 39 ${m}_{0}/{\sigma}^{3}$ |

$\mu $ | solvent viscosity | 25 ${m}_{0}/\tau \sigma $ |

$\mathsf{{\rm Y}}$ | drag coefficient | 476 ${m}_{0}/\tau $ |

Parameter | Description | Value |
---|---|---|

${E}_{b}$ | harmonic bonds potential constant | 619.5 amu/ps${}^{2}$ |

b | harmonic bonds rest length | 1.0 nm |

${E}_{\theta}$ | harmonic angle potential constant | 19.8 amu·nm${}^{2}$/ps${}^{2}$ |

${\theta}_{0}$ | harmonic angles’ rest length | 180${}^{\circ}$ |

Parameter | Description | value |
---|---|---|

${\tau}_{A}$ advection time | propagation in fluid | 0.0013 ps |

${\tau}_{D}$ diffusion time | monomer moves a dist. $\sigma $ | 302 ps |

${\tau}_{R}$ Rouse time | ideal chain $N=20$ | 6937 ps |

${\tau}_{0}$ critical time | cross-over reference time | 598 ps |

T | period of oscillation | 6 ps < T < 3600 ps |

t simulation time | longest simulation time | 150 ps < t < 90,000 ps |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Panagiotou, E.; Millett, K.C.; Atzberger, P.J.
Topological Methods for Polymeric Materials: Characterizing the Relationship Between Polymer Entanglement and Viscoelasticity. *Polymers* **2019**, *11*, 437.
https://doi.org/10.3390/polym11030437

**AMA Style**

Panagiotou E, Millett KC, Atzberger PJ.
Topological Methods for Polymeric Materials: Characterizing the Relationship Between Polymer Entanglement and Viscoelasticity. *Polymers*. 2019; 11(3):437.
https://doi.org/10.3390/polym11030437

**Chicago/Turabian Style**

Panagiotou, Eleni, Kenneth C. Millett, and Paul J. Atzberger.
2019. "Topological Methods for Polymeric Materials: Characterizing the Relationship Between Polymer Entanglement and Viscoelasticity" *Polymers* 11, no. 3: 437.
https://doi.org/10.3390/polym11030437