Solvent-Free Procedure for the Preparation under Controlled Atmosphere Conditions of Phase-Segregated Thermoplastic Polymer Electrolytes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the Electrolytes
2.3. Characterization
3. Results
3.1. Composition Heterogeneity of EMITFSI-2 as Compared to EMITFSI-1
3.2. Relaxations, Transitions, and Phase Morphology as Studied by DSC
3.3. Rheology and Conductivity
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, W.; Tu, Z.; Quian, J.; Choudhury, S.; Archer, L.A.; Lu, Y. Design Principles of Functional Polymer Separators for High-Energy, Metal-Based Batteries. Small 2018, 14, 1703001. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Imanishi, N.; Hirano, A.; Takeda, Y.; Yamamoto, O. Electrochemical properties of the polyethylene oxide-Li(CF3SO2)2N and ionic liquid composite electrolyte. J. Power Sources 2012, 219, 22–28. [Google Scholar] [CrossRef]
- Wang, Q.; Jiang, L.; Yu, Y.; Sun, J. Progress of enhancing the safety of lithium ion battery from the electrolyte aspect (Review). Nano Energy 2019, 55, 93–114. [Google Scholar] [CrossRef]
- Manthiram, A.; Yu, X.; Wang, S. Lithium battery chemistries enabled by solid-state electrolytes (Review). Nat. Rev. Mater. 2017, 2, 16103. [Google Scholar] [CrossRef]
- Arya, A.; Sharma, A.L. Polymer electrolytes for lithium ion batteries: A critical study. Ionics 2017, 23, 497–570. [Google Scholar] [CrossRef]
- Nunes-Pereira, J.; Costa, C.M.; Lanceros-Méndez, S. Polymer composites and blends for battery separators: State of the art, challenges and future trends. J. Power Sources 2015, 281, 378–398. [Google Scholar] [CrossRef]
- Johna, B.; Cheruvallyb, G. Polymeric materials for lithium-ion cells. Polym. Adv. Technol. 2017, 28, 1528–1538. [Google Scholar] [CrossRef]
- Porcarelli, L.; Gerbaldi, C.; Federico Bella, F.; Nair, J.R. Super Soft All-Ethylene Oxide Polymer Electrolyte for Safe All-Solid Lithium Batteries. Nat. Sci. Rep. 2016, 6, 19892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, M.S.; Diemant, T.; Behm, R.J.; Passerini, S.; Giffin, G.A. Dendrite Growth in Mg Metal Cells Containing Mg(TFSI)2/Glyme Electrolytes. J. Electrochem. Soc. 2018, 165, A1983–A1990. [Google Scholar] [CrossRef]
- Wang, K.; Pei, P.; Ma, Z.; Chen, H.; Xu, H.; Chen, D.; Wang, X. Dendrite growth in the recharging process of zinc–air batteries. J. Mater. Chem. A 2015, 3, 22648–22655. [Google Scholar] [CrossRef]
- Azhagurajan, M.; Nakata, A.; Arai, H.; Ogumi, Z.; Kajita, T.; Itoh, T.; Itaya, K. Effect of Vanillin to Prevent the Dendrite Growth of Zn in Zinc-Based Secondary Batteries. J. Electrochem. Soc. 2017, 164, A2407–A2417. [Google Scholar] [CrossRef]
- Mejía, A.; García, N.; Guzmán, J.; Tiemblo, P. Thermoplastic and solid-like electrolytes with liquid-like ionic conductivity based on poly(ethylene oxide) nanocomposites. Solid State Ion. 2014, 261, 74–80. [Google Scholar] [CrossRef] [Green Version]
- Mejía, A.; García, N.; Guzmán, J.; Tiemblo, P. Extrusion Processed Polymer Electrolytes based on Poly(ethylene oxide) and Modified Sepiolite Nanofibers: Effect of Composition and Filler Nature on Rheology and Conductivity. Electrochim. Acta 2014, 137, 526–534. [Google Scholar] [CrossRef] [Green Version]
- Mejía, A.; Benito, E.; Guzmán, J.; Garrido, L.; García, N.; Hoyos, M.; Tiemblo, P. Polymer/Ionic Liquid Thermoplastic Electrolytes for Energy Storage Processed by Solvent Free Procedures. ACS Sustain. Chem. Eng. 2016, 4, 2114–2121. [Google Scholar] [CrossRef]
- González, F.; Gregorio, V.; Rubio, A.; Garrido, L.; García, N.; Pilar Tiemblo, P. Ionic Liquid-Based Thermoplastic Solid Electrolytes Processed by Solvent-Free Procedures. Polymers 2018, 10, 124. [Google Scholar] [CrossRef]
- Mejía, A.; Devaraj, S.; Guzmán, J.; Lopez del Amo, J.M.; García, N.; Rojo, T.; Arman, M.; Tiemblo, P. Scalable plasticized polymer electrolytes reinforced with surface-modified sepiolite fillers – A feasibility study in lithium metal polymer batteries. J. Power Sources 2016, 306, 772–778. [Google Scholar] [CrossRef]
- González, F.; Tiemblo, P.; García, N.; Garcia-Calvo, O.; Fedeli, E.; Kvasha, A.; Urdampilleta, I. High Performance Polymer/Ionic Liquid Thermoplastic Solid Electrolyte Prepared by Solvent Free Processing for Solid State Lithium Metal Batteries. Membranes 2018, 8, 55. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Halley, J.W.; Curtiss, L.; Redfern, P. Mechanisms of lithium transport in amorphous polyethylene oxide. J. Chem. Phys. 2005, 122, 054702. [Google Scholar] [CrossRef] [PubMed]
- Pablos, J.L.; García, N.; Garrido, L.; Guzmán, J.; Catalina, F.; Corrales, T.; Tiemblo, P. Highly efficient mixed Li+ transport in ion gel polycationic electrolytes. J. Membr. Sci. 2018, 545, 133–139. [Google Scholar] [CrossRef]
- Pablos, J.L.; García, N.; Garrido, L.; Guzmán, J.; Catalina, F.; Corrales, T.; Tiemblo, P. Polycationic scaffolds for Li-ion anion exchange transport in ion gel polyelectrolytes. J. Mater. Chem. A 2018, 6, 11215–11225. [Google Scholar] [CrossRef]
- Mejía, A.; García, N.; Guzmán, J.; Tiemblo, P. Surface modification of sepiolite nanofibers with PEG-based compounds to prepare polymer electrolytes. Appl. Clay Sci. 2014, 95, 265–274. [Google Scholar] [CrossRef]
- De Vos, N.; Maton, C.; Stevens, C.V. Electrochemical Stability of Ionic Liquids: General Influences and Degradation Mechanisms. ChemElectroChem 2014, 1, 1258–1270. [Google Scholar] [CrossRef]
Sample | Procedure | [RTIL] (mol m−3) | [LiTFSI] (mol m−3) | [PEO] (mol m−3) | TPGS-S (wt %) |
---|---|---|---|---|---|
EMITFSI-1 | 1 step | 1433 | 760 | 14,160 | 5 |
EMITFSI-2 | 2 steps | 1433 | 760 | 14,160 | 5 |
EMITFSI-2a | 2 steps | 1433 | 760 | 14,160 | 0 |
EMITFSI-2b | 2 steps | 1936 | 0 | 13,774 | 0 |
Sample | DSC 10 °C min−1 | Self-Creep (90 °C) | σ (10−3 S cm−1) | |||
---|---|---|---|---|---|---|
Tg (°C) | Tm (°C) | Tc (°C) | 25 °C | 70 °C | ||
EMITFSI-1 | −51 | 34 | ✓ | 0.5 | 3.7 | |
EMITFSI-2 | −53 | - | ✓ | 0.6 | 4.4 | |
EMITFSI-2a | −50 | 38 | ✗ | ~0.5 | 3.7 | |
EMITFSI-2b | −59 | 40 | −6 | ✗ | - | - |
PEO | −54 | 65 | 42 | ✗ | - | - |
PEO + 5 wt % TPGS-S | −52 | 67 | 50 | ✓ | - | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miguel, Á.; González, F.; Gregorio, V.; García, N.; Tiemblo, P. Solvent-Free Procedure for the Preparation under Controlled Atmosphere Conditions of Phase-Segregated Thermoplastic Polymer Electrolytes. Polymers 2019, 11, 406. https://doi.org/10.3390/polym11030406
Miguel Á, González F, Gregorio V, García N, Tiemblo P. Solvent-Free Procedure for the Preparation under Controlled Atmosphere Conditions of Phase-Segregated Thermoplastic Polymer Electrolytes. Polymers. 2019; 11(3):406. https://doi.org/10.3390/polym11030406
Chicago/Turabian StyleMiguel, Álvaro, Francisco González, Víctor Gregorio, Nuria García, and Pilar Tiemblo. 2019. "Solvent-Free Procedure for the Preparation under Controlled Atmosphere Conditions of Phase-Segregated Thermoplastic Polymer Electrolytes" Polymers 11, no. 3: 406. https://doi.org/10.3390/polym11030406
APA StyleMiguel, Á., González, F., Gregorio, V., García, N., & Tiemblo, P. (2019). Solvent-Free Procedure for the Preparation under Controlled Atmosphere Conditions of Phase-Segregated Thermoplastic Polymer Electrolytes. Polymers, 11(3), 406. https://doi.org/10.3390/polym11030406