Grubbs’ and Schrock’s Catalysts, Ring Opening Metathesis Polymerization and Molecular Brushes—Synthesis, Characterization, Properties and Applications
Abstract
:1. Introduction
2. History—From Propylene Metathesis to Molecular Brushes
3. Macromolecular Brush Synthetic Strategies
4. Catalysts/Initiators
5. Syntheses of Molecular Brushes
5.1. Synthesis of Macromonomers
5.2. Endo-Exo Norbornene Isomers
6. Side Chains of Molecular Brushes and Applications
6.1. Poly(ethylene oxide) Side Chains
6.2. Polystyrene (and Polystyrene Derivative) Side Chains
6.3. Polylactide Side Chains
6.4. Poly(ε-caprolactone) Side Chains
6.5. Poly(acrylate) and Poly(methacrylate) Side Chains
6.6. Other Side Chains
7. Summary
Funding
Conflicts of Interest
Abbreviations
P2VP | poly(2-vinyl pyridine) |
P4VP | poly(4-vinyl pyridine) |
P3HT | poly(3-hexyl thiophene) |
PBd | polybutadiene |
PCL | poly(ε-caprolactone) |
PDLA | poly(d-lactide) |
PDLLA | poly(d,l-lactide) |
PDMAEMA | poly(2-(dimethylamino)ethyl methacrylate) |
PDMS | poly(dimethyl siloxane) |
PE | polyethylene |
PEG | poly(ethylene glycol) |
PEO | poly(ethylene oxide) |
PHIC | poly(hexyl isocyanate) |
PLLA | poly(l-lactide) |
PMan | poly(maleic anhydride) |
PMMA | poly(methyl methacrylate) |
PnBA | poly(n-butyl acrylate) |
PNBE | polynorbornene |
PNIPAAM | poly(N-isopropylacrylamide) |
PBAEAM | P(N-tert-butyloxycarbonyl-N′-acryl-1,2-diaminoethane) |
PS | polystyrene |
PSOH or PpHS | poly(p-hydroxy styrene) |
P(pHS-co-PhMI) | poly(p-hydroxystyrene-co-N-phenylmaleimide) |
PtBA | poly(tert-butyl acrylate) |
PtBOS | poly(tert-butoxy styrene) |
PTFEMA | poly(2,2,2-trifluoroethyl methacrylate) |
PTFpHS | poly(tetrafluoro-p-hydroxystyrene) |
References
- MLA Style: The Nobel Prize in Chemistry 2005. NobelPrize.org. Nobel Media AB 2018. Sat. 13 October 2018. Available online: https://www.nobelprize.org/prizes/chemistry/2005/summary/ (accessed on 20 October 2018).
- MLA Style: Robert H. Grubb—Nobel Lecture. NobelPrize.org. Nobel Media AB 2018. Mon. 15 October 2018. Available online: https://www.nobelprize.org/prizes/chemistry/2005/grubbs/lecture/ (accessed on 20 October 2018).
- Grubbs, R.H. Introduction. In Handbook of Metathesis; Wiley: Weinheim, Germany, 2003; Volume 3, p. 1. ISBN 3-527-30616-1. [Google Scholar]
- Feast, W.J.; Gibson, V.C.; Johnson, A.F.; Khosravi, E.; Moshin, M.A. Tailored copolymers via coupled anionic and ring opening metathesis polymerization. Synthesis and polymerization of bicyclo[2.2.1] hept-5-ene-2,3-trans-bis(polystyrylcarboxylate)s. Polymer 1994, 35, 3542–3548. [Google Scholar] [CrossRef]
- Breunig, S.; Heroguez, V.; Gnanou, Y.; Fontanille, M. Ring-opening Metathesis Polymerization Of ω-norbornenyl Polystyrene Macromonomers And Characterization of the Corresponding Structures. Macromol. Symp. 1995, 95, 151–166. [Google Scholar] [CrossRef]
- Heroguez, V.; Gnanou, Y.; Fontanille, M. Synthesis of a-norbornenyl polystyrene macromonomers and their ring-opening metathesis polymerization. Macromol. Rapid Commun. 1996, 17, 137–142. [Google Scholar] [CrossRef]
- Heroguez, V.; Breunig, S.; Gnanou, Y.; Fontanille, M. Synthesis of a-Norbornenyl poly(ethylene oxide) Macromonomers and Their Ring-Opening Metathesis Polymerization. Macromolecules 1996, 29, 4459–4464. [Google Scholar] [CrossRef]
- Heroguez, V.; Gnanou, Y.; Fontanille, M. Novel Amphiphilic Architectures by Ring-Opening Metathesis Polymerization of Macromonomers. Macromolecules 1997, 30, 4791–4798. [Google Scholar] [CrossRef]
- Morandi, G.; Montembault, V.; Pascual, S.; Legoupy, S.; Fontaine, L. Well-Defined Graft Copolymers Issued from Cyclobutenyl Macromonomers by Combination of ATRP and ROMP. Macromolecules 2006, 39, 2732–2735. [Google Scholar] [CrossRef]
- Morandi, G.; Pascual, S.; Montembault, V.; Legoupy, S.; Fontaine, L. Synthesis of Brush Copolymers Based on a Poly(1,4-butadiene) Backbone via the “Grafting From” Approach by ROMP and ATRP. Macromolecules 2009, 42, 6927–6931. [Google Scholar] [CrossRef]
- Le, D.; Morandi, G.; Legoupy, S.; Pascual, S.; Montembault, V.; Fontaine, L. Cyclobutenyl macromonomers: Synthetic strategies and ring-opening metathesis polymerization. Eur. Polym. J. 2013, 49, 972–983. [Google Scholar] [CrossRef]
- Leroux, F.; Montembault, V.; Pascual, S.; Guerin, W.; Guillaume, S.M.; Fontaine, L. Synthesis and polymerization of cyclobutenyl-functionalized polylactide and polycaprolactone: a consecutive ROP/ROMP route towards poly(1,4-butadiene)-g-polyesters. J. Polym. Sci. Part A Polym. Chem. 2014, 5, 3476–3486. [Google Scholar] [CrossRef]
- Le, D.; Montembault, V.; Pascual, S.; Collette, F.; Heroguez, V.; Fontaine, L. Synthesis of 1,4-polybutadiene-g-poly(ethylene oxide) via the macromonomer approach by ROMP. Polym. Chem. 2013, 4, 2168–2173. [Google Scholar] [CrossRef]
- Schneider, V.; Frolich, P.K. Mechanism of Formation of Aromatics from Lower Paraffins. Ind. Eng. Chem. 1931, 28, 1405–1410. [Google Scholar] [CrossRef]
- Anderson, A.W.; Merckling, N.G. To Du Pont de Nemours & Co. US Patent 2 721 189, 1954/1955. [Google Scholar]
- Banks, R.L.; Bailey, G.C. Olefin Disproportonation: A New Catalytic Process. Ind. Eng. Chem. Prod. Res. Dev. 1964, 3, 170–173. [Google Scholar] [CrossRef]
- Natta, G.; Dall’asta, G.; Mazzanti, G. Stereospecific Homopolymerization of Cyclopentene. Angew. Chem. Int. Ed. Engl. 1964, 3, 723. [Google Scholar] [CrossRef]
- Fischer, E.O.; Maasböl, A. Zur Frage eines Wolfram-Carbonyl-Carben-Komplexes. Angew. Chem. 1964, 76, 645. [Google Scholar] [CrossRef]
- Eleuterio, H.S. Olefin metathesis: chance favors those minds that are best prepared. J. Mol. Catal. 1991, 65, 55–61. [Google Scholar] [CrossRef]
- Truett, W.L.; Johnson, D.R.; Robinson, I.M.; Montague, B.P. Polynorbornene by Coordiantion Polymerization. J. Am. Chem. Soc. 1960, 82, 2337. [Google Scholar] [CrossRef]
- Calderon, N.; Chen, H.Y.; Scott, K.W. Olefin metathesis—A novel reaction for skeletal transformations of unsaturated hydrocarbons. Tetrahedron Lett. 1967, 34, 3327. [Google Scholar] [CrossRef]
- Herisson, L.; Chauvin, Y. Catalyse de transformation des oléfines par les complexes du tungstène. II. Télomérisation des oléfines cycliques en présence d’oléfines acycliques. Makromol. Chem. 1971, 141, 162. [Google Scholar] [CrossRef]
- Norton, R.L.; McCarthy, T.J. ω-Norbornenyl Polystyrene: An Olefin Metathesis Polymerizable Macromonomer. Macromolecules 1989, 22, 1022–1025. [Google Scholar] [CrossRef]
- Feast, W.J.; Gibson, V.C.; Johnson, A.F.; Khosravi, E.; Mohsin, M.A. Well-defined graft copolymers via coupled living anionic and living ring opening metathesis polymerisation. J. Mol. Cat. A Chem. 1997, 115, 37–42. [Google Scholar] [CrossRef]
- Rizmi, A.C.; Khosravi, E.; Feast, W.J.; Mohsin, M.A.; Johnson, A.F. Synthesis of well-defined graft copolymers via coupled living anionic polymerization and living ROMP. Polymer 1998, 39, 6605–6610. [Google Scholar] [CrossRef]
- Grande, D.; Six, J.-L.; Heroguez, V.; Gnanou, Y.; Fontanille, M. Novel styrene-butadiene block copolymers by sequential and statistical copolymerization of corresponding macromonomers. Macromol. Symp. 1998, 128, 21–37. [Google Scholar] [CrossRef]
- Grande, D.; Six, J.-L.; Heroguez, V.; Fontanille, M.; Gnanou, Y. Polymers with Novel Topologies by Ring-opening Metathesis Polymerization of Macromonomers. Polym. Adv. Technol. 1998, 9, 601–612. [Google Scholar] [CrossRef]
- Nomura, K.; Takahashi, S.; Imanishi, Y. Ring-opening metathesis polymerization (ROMP) of norbornene macromonomer using Mo(CHCMe2Ph)(NAr)(OR)2 as the initiator. Polymer 2000, 41, 4345–4350. [Google Scholar] [CrossRef]
- Nomura, K.; Takahashi, S.; Imanishi, Y. Synthesis of Poly(macromonomer)s by Repeating Ring-Opening Metathesis Polymerization (ROMP) with Mo(CHCMe2Ph)(NAr)(OR)2 Initiators. Macromolecules 2001, 34, 4712–4723. [Google Scholar] [CrossRef]
- Heroguez, V.; Gnanou, Y.; Fontanille, M. Synthesis of α- and ω-norbornenyl-polybutadiene macromonomers and their ring-opening metathesis polymerization. Macromol. Chem. Phys. 1998, 199, 1405–1412. [Google Scholar] [CrossRef]
- Lecomte, P.; Mecerreyes, D.; Dubois, P.; Demonceau, A.; Noels, A.F.; Jérôme, R. Synthesis of poly(norbornene-g-e-caprolactone) copolymers by sequential controlled ring opening polymerization. Polym. Bull. 1998, 40, 631–638. [Google Scholar] [CrossRef]
- Mecerreyes, D.; Dahan, D.; Lecomte, P.; Dubois, P.; Demonceau, A.; Noels, A.F.; Jérôme, R. Ring-opening Metathesis Polymerization of New α-Norbornenyl Poly(ε-caprolactone) Macromonomers. J. Polym. Sci. Part A Polym. Chem. 1999, 37, 2447–2455. [Google Scholar] [CrossRef]
- Maynard, H.D.; Okada, S.Y.; Grubbs, R.H. Synthesis of Norbornenyl Polymers with Bioactive Oligopeptides by Ring-Opening Metathesis Polymerization. Macromolecules 2000, 33, 6239–6248. [Google Scholar] [CrossRef]
- Jha, S.; Dutta, S.; Bowden, N.B. Synthesis of Ultralarge Molecular Weight Bottlebrush Polymers Using Grubbs’ Catalysts. Macromolecules 2004, 37, 4365–4374. [Google Scholar] [CrossRef]
- Conrad, S.M.; Grubbs, R.H. Tunable, Temperature-Responsive Polynorbornenes with Side Chains Based on an Elastin Peptide Sequence. Angew. Chem. Int. Ed. 2009, 48, 8328–8330. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Olsen, B.D.; Grubbs, R.H. Efficient Synthesis of Narrowly Dispersed Brush Copolymers and Study of Their Assemblies: The Importance of Side Chain Arrangement. J. Am. Chem. Soc. 2009, 131, 18525–18532. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Kornfield, J.A.; Grubbs, R.H. Efficient Synthesis of Narrowly Dispersed Brush Polymers via Living Ring-Opening Metathesis Polymerization of Macromonomers. Macromolecules 2009, 42, 3761–3766. [Google Scholar] [CrossRef]
- Lu, H.; Wang, J.; Lin, Y.; Cheng, J. One-Pot Synthesis of Brush-Like Polymers via Integrated Ring-Opening Metathesis Polymerization and Polymerization of Amino Acid N-Carboxyanhydrides. J. Am. Chem. Soc. 2009, 131, 13582–13583. [Google Scholar] [CrossRef] [PubMed]
- Radzinski, S.C.; Foster, J.C.; Matson, J.B. Synthesis of bottlebrush polymers via transfer-to and grafting-through approaches using a RAFT chain transfer agent with a ROMP-active Z-group. Polym. Chem. 2015, 6, 5643–5652. [Google Scholar] [CrossRef]
- Radzinski, S.C.; Lewis, S.E.; Foster, J.C.; French, E.V.; Matson, J.B. Factors Affecting Bottlebrush Polymer Synthesis by the Transfer-to Method Using Reversible Addition–Fragmentation Chain Transfer (RAFT) Polymerization. Polym. Chem. 2017, 8, 1636–1643. [Google Scholar] [CrossRef]
- Imanishi, Y.; Nomura, K. Olefin Polymerization and Copolymerization with Soluble Transition-Metal Complex Catalysts. J. Pol. Sci. Part A Polym. Chem. 2000, 38, 4613–4626. [Google Scholar] [CrossRef]
- Khosravi, E.; Hutchings, L.R.; Kujawa-Welten, M. Synthesis of well-defined graft co-polymers via coupled living anionic and living ring-opening metathesis polymerisation. Des. Monomers Polym. 2004, 7, 619–632. [Google Scholar] [CrossRef]
- Heroguez, V.; Amedro, E.; Grande, D.; Fontanille, M.; Gnanou, Y. Novel Styrene-Butadiene Copolymers by Ring-Opening Metathesis Polymerization. Macromolecules 2000, 33, 7241–7248. [Google Scholar] [CrossRef]
- Nikovia, C.; Theodoridis, L.; Alexandris, S.; Bilalis, P.; Hadjichristidis, N.; Floudas, G.; Pitsikalis, M. Macromolecular Brushes by Combination of Ring-Opening and Ring-Opening Metathesis Polymerization. Synthesis, Self-Assembly, Thermodynamics, and Dynamics. Macromolecules 2018, 51, 8940–8955. [Google Scholar] [CrossRef]
- Desmukh, P.; Yoon, H.; Cho, S.; Yoon, S.Y.; Zore, O.V.; Kim, T.; Chung, I.; Ahn, S.; Kasi, R.M. Impact of Poly(E-Caprolactone) Architecture on the Thermomechanical and Shape Memory Properties. J. Polym. Sci. Part A Polym. Chem. 2017, 55, 3424–3433. [Google Scholar] [CrossRef]
- Lahasky, S.H.; Lu, L.; Huberty, W.A.; Cao, J.; Guo, L.; Garno, J.C.; Zhang, D. Synthesis and characterization of thermoresponsive polypeptoid bottlebrushes. Polym. Chem. 2014, 5, 1418. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Z.; Gnanou, Y.; Hadjichristidis, N. Well-Defined Polyethylene-Based Random, Block, and Bilayered Molecular Cobrushes. Macromolecules 2015, 48, 3556–3562. [Google Scholar] [CrossRef]
- Teo, Y.C.; Xia, Y. Importance of Macromonomer Quality in the Ring-Opening Metathesis Polymerization of Macromonomers. Macromolecules 2015, 48, 5656–5662. [Google Scholar] [CrossRef]
- Li, A.; Li, Z.; Zhang, S.; Sun, G.; Policarpio, D.M.; Wooley, K.L. Synthesis and Direct Visualization of Dumbbell-Shaped Molecular Brushes. ACS Macro Lett. 2012, 1, 241–245. [Google Scholar] [CrossRef]
- Choinopoulos, I.; Patias, G.; Koinis, S.; Pitsikalis, M. Synthesis and Characterization of Brush Diblock and Triblock Copolymers Bearing Polynorbornene Backbone and Poly(L-lactide) and/or Poly(hexyl isocyanate) Side Chains by a Combination of Coordination and Ring Opening Metathesis Polymerization. J. Polym. Sci. Part A Polym. Chem. 2017, 55, 3455–3465. [Google Scholar] [CrossRef]
- Zou, J.; Jafr, G.; Burts, A.O.; Themistou, E.; Yap, Y.; Wintrob, Z.A.P.; Alexandridis, P.; Ceacareanu, A.C.; Cheng, C. pH-Sensitive brush polymer-drug conjugates by ring-opening metathesiscopolymerization. J. Chem. Commun. 2011, 47, 4493–4495. [Google Scholar] [CrossRef]
- Eissa, A.M.; Khosravi, E. Comb-Like Graft Copolymers of Poly(oxa)norbornene: Effi cient Synthesis Using a Combination of ROMP and Click Chemistry. Macromol. Chem. Phys. 2015, 216, 964–976. [Google Scholar] [CrossRef]
- N’guyen, D.A.; Montembault, V.; Pioge, S.; Pascual, S.; Fontaine, L. Norbornene-Functionalized PEO-b-PCL: A Versatile Platform for Mikto-Arm Star, Umbrella-like, and Comb-like Graft Copolymers. J. Polym. Sci. Part A Polym. Chem. 2017, 55, 4051–4061. [Google Scholar] [CrossRef]
- Theodosopoulos, G.V.; Zisis, C.; Charalambidis, G.; Nikolaou, V.; Coutsolelos, A.G.; Pitsikalis, M. Synthesis, Characterization and Thermal Properties of Poly(ethylene oxide), PEO, Polymacromonomers via Anionic and Ring Opening Metathesis Polymerization. Polymers 2017, 9, 145. [Google Scholar] [CrossRef]
- Le, D.; Montembault, V.; Soutif, J.-C.; Rutnakornpituk, M.; Fontaine, L. Synthesis of Well-Defined ω-Oxanorbornenyl Poly(ethylene oxide) Macromonomers via Click Chemistry and Their Ring-Opening Metathesis Polymerization. Macromolecules 2010, 43, 5611–5617. [Google Scholar] [CrossRef]
- Li, Y.; Zou, J.; Das, B.P.; Tsianou, M.; Cheng, C. Well-Defined Amphiphilic Double-Brush Copolymers and Their Performance as Emulsion Surfactants. Macromolecules 2012, 45, 4623–4629. [Google Scholar] [CrossRef]
- Su, L.; Heo, G.S.; Lin, Y.-N.; Dong, M.; Zhang, S.; Chen, Y.; Sun, G.; Wooley, K.L. Syntheses of Triblock Bottlebrush Polymers Through Sequential ROMPs: Expanding the Functionalities of Molecular Brushes. J. Polym. Sci. Part A Polym. Chem. 2017, 55, 2966–2970. [Google Scholar] [CrossRef]
- Burts, A.O.; Gao, A.X.; Johnson, J.A. Brush-First Synthesis of Core-Photodegradable Miktoarm Star Polymers via ROMP: Towards Photoresponsive Self-Assemblies. Macromol. Rapid Commun. 2014, 35, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Prukop, S.L.; Biswal, S.L.; Verduzco, R. Surface Properties of Bottlebrush Polymer Thin Films. Macromolecules 2012, 45, 7118–7127. [Google Scholar] [CrossRef]
- Li, X.; ShamsiJazeyi, H.; Pesek, S.L.; Agrawal, A.; Hammouda, B.; Verduzco, R. Thermoresponsive PNIPAAM bottlebrush polymers with tailored side-chain length and end-group structure. Soft Matter 2014, 10, 2008–2015. [Google Scholar] [CrossRef] [PubMed]
- Bates, C.M.; Chang, A.B.; Momčilović, N.; Jones, S.C.; Grubbs, R.H. ABA Triblock Brush Polymers: Synthesis, Self-Assembly, Conductivity, and Rheological Properties. Macromolecules 2015, 48, 4967–4973. [Google Scholar] [CrossRef]
- Song, D.-P.; Li, C.; Colella, N.S.; Lu, X.; Lee, J.-H.; Watkins, J.J. Thermally Tunable Metallodielectric Photonic Crystals from the Self-Assembly of Brush Block Copolymers and Gold Nanoparticles. Adv. Opt. Mater. 2015, 3, 1169–1175. [Google Scholar] [CrossRef]
- Song, D.-P.; Lin, Y.; Colella, N.S.; Li, C.; Liu, X.-H.; Gido, S.; Watkins, J.J. Controlled Supramolecular Self-Assembly of Large Nanoparticles in Amphiphilic Brush Block Copolymers. J. Am. Chem. Soc. 2015, 137, 3771–3774. [Google Scholar] [CrossRef]
- Song, D.-P.; Shahin, S.; Xie, W.; Mehravar, S.; Li, C.; Liu, X.-H.; Norwood, R.A.; Watkins, J.J. Directed Assembly of Quantum Dots Using Brush Block Copolymers for Well-Ordered Nonlinear Optical Nanocomposites. Macromolecules 2016, 49, 5068–5075. [Google Scholar] [CrossRef]
- Yavitt, B.M.; Gai, Y.; Song, D.-P.; Winter, H.; Watkins, J.J. High Molecular Mobility and Viscoelasticity of Microphase-Separated Bottlebrush Diblock Copolymer Melts. Macromolecules 2017, 50, 396–405. [Google Scholar] [CrossRef]
- Gai, Y.; Song, D.-P.; Yavitt, B.M.; Watkins, J.J. Polystyrene-block-poly(ethylene oxide) Bottlebrush Block Copolymer Morphology Transitions: Influence of Side Chain Length and Volume Fraction. Macromolecules 2017, 50, 1503–1511. [Google Scholar] [CrossRef]
- Shibuya, Y.; Nguyen, H.; Johnson, J.A. Mikto-Brush-Arm Star Polymers via Cross-Linking of Dissimilar Bottlebrushes: Synthesis and Solution Morphologies. ACS Macro Lett. 2017, 6, 963–968. [Google Scholar] [CrossRef]
- Theodosopoulos, G.V.; Bitsi, S.-L.; Pitsikalis, M. Complex Brush-Like Macromolecular Architectures via Anionic and Ring Opening Metathesis Polymerization: Synthesis, Characterization, and Thermal Properties. Macromol. Chem. Phys. 2018, 219, 1700253. [Google Scholar] [CrossRef]
- Yu, Y.-G.; Chae, C.-G.; Kim, M.-J.; Seo, H.-B.; Grubbs, R.H.; Lee, J.-S. Precise Synthesis of Bottlebrush Block Copolymers from ω-End-Norbornyl Polystyrene and Poly(4-tert-butoxystyrene) via Living Anionic Polymerization and Ring-Opening Metathesis Polymerization. Macromolecules 2018, 51, 447–455. [Google Scholar] [CrossRef]
- Song, D.-P.; Li, C.; Colella, N.S.; Xie, W.; Li, S.; Lu, X.; Gido, S.; Lee, J.-H.; Watkins, J.J. Large-Volume Self-Organization of Polymer/Nanoparticle Hybrids with Millimeter-Scale Grain Sizes Using Brush Block Copolymers. J. Am. Chem. Soc. 2015, 137, 12510–12513. [Google Scholar] [CrossRef] [PubMed]
- Song, D.-P.; Gai, Y.; Yavitt, B.M.; Ribbe, A.; Gido, S.; Watkins, J.J. Structural Diversity and Phase Behavior of Brush Block Copolymer Nanocomposites. Macromolecules 2016, 49, 6480–6488. [Google Scholar] [CrossRef]
- Miki, K.; Kimura, A.; Oride, K.; Kuramochi, Y.; Matsuoka, H.; Harada, H.; Hiraoka, M.; Ohe, K. High-Contrast Fluorescence Imaging of Tumors In Vivo Using Nanoparticles of Amphiphilic Brush-Like Copolymers Produced by ROMP. Angew. Chem. Int. Ed. 2011, 50, 6567–6570. [Google Scholar] [CrossRef]
- Miki, K.; Kimura, A.; Oride, K.; Kuramochi, Y.; Matsuoka, H.; Harada, H.; Hiraoka, M.; Ohe, K. Influence of Side Chain Length on Fluorescence Intensity of ROMP-Based Polymeric Nanoparticles and Their Tumor Specifi city in In-Vivo Tumor Imaging. Small 2011, 7, 3536–3547. [Google Scholar] [CrossRef]
- Miki, K.; Nakano, K.; Matsuoka, H.; Yeom, C.J.; Harada, H.; Hiraoka, M.; Ohe, K. Amphiphilic Brush-Like Copolymers Involving Hydrophobic Amino Acid- and Oligopeptide-Side Chains for Optical Tumor Imaging In Vivo. Bull. Chem. Soc. Jpn. 2012, 85, 1277–1286. [Google Scholar] [CrossRef]
- Zhang, Y.; Yin, Q.; Lu, H.; Xia, H.; Lin, Y.; Cheng, J. PEG-Polypeptide Dual Brush Block Copolymers: Synthesis and Application in Nanoparticle Surface PEGylation. ACS Macro Lett. 2013, 2, 809–813. [Google Scholar] [CrossRef] [PubMed]
- Blum, A.P.; Kammeyer, J.K.; Gianneschi, N.C. Activating peptides for cellular uptake via polymerization into high density brushes. Chem. Sci. 2016, 7, 989–994. [Google Scholar] [CrossRef] [PubMed]
- Wright, D.B.; Touve, M.A.; Adamiak, L.; Gianneschi, N.C. ROMPISA: Ring-Opening Metathesis Polymerization-Induced Self-Assembly. ACS Macro Lett. 2017, 6, 925–929. [Google Scholar] [CrossRef]
- Johnson, J.A.; Lu, Y.Y.; Burts, A.O.; Xia, Y.; Durrell, A.C.; Tirrell, D.A.; Grubbs, R.H. Drug-Loaded, Bivalent-Bottle-Brush Polymers by Graft-through ROMP. Macromolecules 2010, 43, 10326–10335. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.-H.; Nguyen, C.T.; Gonzalez-Fajardo, L.; Hargrove, D.; Song, D.; Desmukh, P.; Mahajan, L.; Ndaya, D.; Lai, L.; Kasi, R.M.; et al. Long Circulating Self-Assembled Nanoparticles from Cholesterol-Containing Brush-Like Block Copolymers for Improved Drug Delivery to Tumors. Biomacromolecules 2014, 15, 4363–4375. [Google Scholar] [CrossRef] [PubMed]
- Burts, A.O.; Liao, L.; Lu, Y.Y.; Tirrell, D.A.; Johnson, J.A. Brush-first and Click: Efficient Synthesis of Nanoparticles that Degrade and Release Doxorubicin in Response to Light. Photochem. Photobiol. 2014, 90, 380–385. [Google Scholar] [CrossRef] [PubMed]
- Gao, A.X.; Liao, L.; Johnson, J.A. Synthesis of Acid-Labile PEG and PEG-Doxorubicin-Conjugate Nanoparticles via Brush-First ROMP. ACS Macro Lett. 2014, 3, 854–857. [Google Scholar] [CrossRef]
- Liao, L.; Liu, J.; Dreaden, E.C.; Morton, S.W.; Shopsowitz, K.E.; Hammond, P.T.; Johnson, J.A. A Convergent Synthetic Platform for Single-Nanoparticle Combination Cancer Therapy: Ratiometric Loading and Controlled Release of Cisplatin, Doxorubicin, and Camptothecin. J. Am. Chem. Soc. 2014, 136, 5896–5899. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.; Yu, Y.; Li, Y.; Ji, W.; Chen, C.-K.; Law, W.-C.; Parad, P.N.; Cheng, C. Well-defined diblock brush polymer–drug conjugates for sustained delivery of paclitaxel. Biomater. Sci. 2015, 3, 1078–1084. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.A.; Lu, Y.Y.; Burts, A.O.; Lim, Y.; Finn, M.G.; Koberstein, J.T.; Turro, N.J.; Tirrell, D.A.; Grubbs, R.H. Core-Clickable PEG-Branch-Azide Bivalent-Bottle-Brush Polymers by ROMP: Grafting-Through and Clicking-To. J. Am. Chem. Soc. 2011, 133, 559–566. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Burts, A.O.; Li, Y.; Zhukhovitskiy, A.V.; Ottaviani, M.F.; Turro, N.J.; Johnson, J.A. “Brush-First” Method for the Parallel Synthesis of Photocleavable, Nitroxide-Labeled Poly(ethylene glycol) Star Polymers. J. Am. Chem. Soc. 2012, 134, 16337–16344. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Gao, A.X.; Johnson, J.A. Particles without a Box: Brush-first Synthesis of Photodegradable PEG Star Polymers under Ambient Conditions. J. Vis. Exp. 2013, 80, e50874. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Fu, Q.; Ren, J.M.; Bryant, G.; Qiao, G.G. Novel drug carriers: from grafted polymers to cross-linked vesicles. Chem. Commun. 2013, 49, 33–35. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Xu, J.; Ladwig, K.; Henderson, T.M.A.; Qiao, G.G. Degradable cross-linked polymer vesicles for the efficient delivery of platinum drugs. Polym. Chem. 2015, 6, 35–43. [Google Scholar] [CrossRef]
- Burts, A.O.; Li, Y.; Zhukhovitskiy, A.V.; Patel, P.R.; Grubbs, R.H.; Ottaviani, M.F.; Turro, N.J.; Johnson, J.A. Using EPR To Compare PEG-branch-nitroxide “Bivalent-Brush Polymers” and Traditional PEG Bottle−Brush Polymers: Branching Makes a Difference. Macromolecules 2012, 45, 8310–8318. [Google Scholar] [CrossRef]
- Miki, K.; Kimura, A.; Oride, K.; Inoue, S.; Kuramochi, Y.; Nayak, R.R.; Matsuoka, H.; Harada, H.; Hiraoka, M.; Ohe, K. Ring-opening metathesis polymerization-based synthesis of polymeric nanoparticles for enhanced tumor imaging in vivo: Synergistic effect of folate-receptor targeting and PEGylation. Biomaterials 2010, 31, 934–942. [Google Scholar] [CrossRef] [PubMed]
- Yao, Q.; Gutierrez, D.C.; Hoang, N.H.; Kim, D.; Wang, R.; Hobbs, C.; Zhu, L. Efficient Codelivery of Paclitaxel and Curcumin by Novel Bottlebrush Copolymer-based Micelles. Mol. Pharm. 2017, 14, 2378–2389. [Google Scholar] [CrossRef] [PubMed]
- Ping, J.; Pan, H.; Hou, P.-P.; Zhang, M.-Y.; Wang, X.; Wang, C.; Chen, J.; Wu, D.; Shen, Z.; Fan, X.-H. Solid Polymer Electrolytes with Excellent High-Temperature Properties Based on Brush Block Copolymers Having Rigid Side Chains. ACS Appl. Mater. Interfaces 2017, 9, 6130–6137. [Google Scholar] [CrossRef]
- Adamiak, L.; Pendery, J.; Sun, J.; Iwabata, K.; Gianneschi, N.C.; Abbott, N.L. Design Principles for Triggerable Polymeric Amphiphiles with Mesogenic Side Chains for Multiscale Responses with Liquid Crystals. Macromolecules 2018, 51, 1978–1985. [Google Scholar] [CrossRef]
- Desmukh, P.; Ahn, S.; Geelhand de Merxem, L.; Kasi, R.M. Interplay between Liquid Crystalline Order and Microphase Segregation on the Self-Assembly of Side-Chain Liquid Crystalline Brush Block Copolymers. Macromolecules 2013, 46, 8245–8252. [Google Scholar] [CrossRef]
- Desmukh, P.; Ahn, S.; Gopinadhan, M.; Osuji, C.O.; Kasi, R.M. Hierarchically Self-Assembled Photonic Materials from Liquid Crystalline Random Brush Copolymers. Macromolecules 2013, 46, 4558–4566. [Google Scholar] [CrossRef]
- Gonzalez-Fajardo, L.; Mahajan, L.; Ndaya, D.; Hargrove, D.; Manautou, J.; Liang, B.T.; Chen, M.-H.; Kasi, R.M.; Lu, X. Reduced In Vivo Toxicity of Doxorubicin by Encapsulation in Cholesterol-Containing Self-Assembled Nanoparticles. Pharm. Res. 2016, 107, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Martin, I.J.; Kasi, R.M.; Wei, M. Enhanced Intrafibrillar Mineralization of Collagen Fibrils Induced by Brushlike Polymers. ACS Appl. Mater. Interfaces 2018, 10, 28440–28449. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Christian-Tabak, L.; Fuan, V.; Zou, J.; Cheng, C. Crosslinking-Induced Morphology Change of Latex Nanoparticles: A Study of RAFT-Mediated Polymerization in Aqueous Dispersed Media Using Amphiphilic Double-Brush Copolymers as Reactive Surfactants. J. Polym. Sci. Part A Polym. Chem. 2014, 52, 3250–3259. [Google Scholar] [CrossRef]
- Nguyen, H.; Gallagher, N.M.; Vohidov, F.; Jiang, Y.; Kawamoto, K.; Zhang, H.; Park, J.V.; Huang, Z.; Ottaviani, M.F.; Rajca, A.; Johnson, J.A. Scalable Synthesis of Multivalent Macromonomers for ROMP. ACS Macro Lett. 2018, 7, 472–476. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Tran, T.-H.; Jia, F.; Tan, X.; Davis, S.; Krishnan, S.; Amiji, M.M.; Zhang, K. Providing Oligonucleotides with Steric Selectivity by Brush-Polymer-Assisted Compaction. J. Am. Chem. Soc. 2015, 137, 12466–12469. [Google Scholar] [CrossRef] [PubMed]
- Slegeris, R.; Ondrusek, B.A.; Chung, H. Catechol- and Ketone-Containing Multifunctional Bottlebrush Polymers for Oxime Ligation and Hydrogel Formation. Polym. Chem. 2017, 8, 4707–4715. [Google Scholar] [CrossRef]
- Liaw, D.-J.; Huang, C.-C.; Tsai, C.-H. Synthesis and Characterization of a Novel Carbazole-containing Branched Random Copolymer Derived from α-Norbornene Methylene Polystyrene Macromonomer via Ring-opening Metathesis Polymerization. Tamkang J. Sci. Eng. 2003, 6, 133–138. [Google Scholar]
- Liaw, D.-J.; Huang, C.-C.; Kang, E.-T. Novel fluorescent polynorbornenes with multi-functional armed structure by using highly stable block macroinitiators via a combination of living ring-opening metathesis polymerization and atom transfer radical polymerization. Polymer 2006, 47, 3057–3064. [Google Scholar] [CrossRef]
- Runge, M.B.; Dutta, S.; Bowden, N.B. Synthesis of Comb Block Copolymers by ROMP, ATRP, and ROP and Their Assembly in the Solid State. Macromolecules 2006, 39, 498–508. [Google Scholar] [CrossRef]
- Runge, M.B.; Bowden, N.B. Synthesis of High Molecular Weight Comb Block Copolymers and Their Assembly into Ordered Morphologies in the Solid State. J. Am. Chem. Soc. 2007, 129, 10551–10560. [Google Scholar] [CrossRef]
- Runge, M.B.; Lipscomb, C.E.; Ditzler, L.R.; Mahanthappa, M.K.; Tivanski, A.V.; Bowden, N.B. Investigation of the Assembly of Comb Block Copolymers in the Solid State. Macromolecules 2008, 41, 7687–7694. [Google Scholar] [CrossRef]
- Runge, M.B.; Yoo, J.; Bowden, N.B. Synthesis of Comb Tri- and Tetrablock Copolymers Catalyzed by the Grubbs First Generation Catalyst. Macromol. Rapid Commun. 2009, 30, 1392–1398. [Google Scholar] [CrossRef] [PubMed]
- Yoo, J.; Runge, M.B.; Bowden, N.B. Synthesis of complex architectures of comb block copolymers. Polymer 2011, 52, 2499–2504. [Google Scholar] [CrossRef]
- Cheng, C.; Khosdel, E.; Wooley, K.L. One-Pot Tandem Synthesis of a Core–shell Brush Copolymer from Small Molecule Reactants by Ring-Opening Metathesis and Reversible Addition-Fragmentation Chain Transfer (Co)polymerizations. Macromolecules 2007, 40, 2289–2292. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, K.; Ma, J.; Cheng, C.; Wooley, K.L. Facile Syntheses of Cylindrical Molecular Brushes by a Sequential RAFT and ROMP ‘‘Grafting-Through’’ Methodology. J. Polym. Sci. Part A Polym. Chem. 2009, 47, 5557–5563. [Google Scholar] [CrossRef] [PubMed]
- Sveinbjörnsson, B.R.; Weitekampa, R.A.; Miyakea, G.M.; Xia, Y.; Atwaterb, H.A.; Grubbs, R.H. Rapid self-assembly of brush block copolymers to photonic crystals. PNAS 2012, 109, 14332–14336. [Google Scholar] [CrossRef]
- Li, Z.; Ma, J.; Cheng, C.; Zhang, K.; Wooley, K.L. Synthesis of Hetero-Grafted Amphiphilic Diblock Molecular Brushes and Their Self-Assembly in Aqueous Medium. Macromolecules 2010, 43, 1182–1184. [Google Scholar] [CrossRef]
- Sun, G.; Cho, S.; Clark, C.; Verkhoturov, S.V.; Eller, M.J.; Li, A.; Pavía-Jiménez, A.; Schweikert, E.A.; Thackeray, J.W.; Trefonas, P.; et al. Nanoscopic Cylindrical Dual Concentric and Lengthwise Block Brush Terpolymers as Covalent Preassembled High-Resolution and High- Sensitivity Negative-Tone Photoresist Materials. J. Am. Chem. Soc. 2013, 135, 4203–4206. [Google Scholar] [CrossRef]
- Cho, S.; Yang, F.; Sun, G.; Eller, M.J.; Clark, C.; Schweikert, E.A.; Thackeray, J.W.; Trefonas, P.; Wooley, K.L. Directing Self-Assembly of Nanoscopic Cylindrical Diblock Brush Terpolymers into Films with Desired Spatial Orientations: Expansion of Chemical Composition Scope. Macromol. Rapid Commun. 2014, 35, 437–441. [Google Scholar] [CrossRef]
- Yang, F.; Cho, S.; Sun, G.; Verkhoturov, S.V.; Thackeray, J.W.; Trefonas, P.; Wooley, K.L.; Schweikert, E.A. Nanodomain analysis with cluster-SIMS: application to the characterization of macromolecular brush architecture. Surf. Interface Anal. 2015, 47, 1051–1055. [Google Scholar] [CrossRef]
- Li, Y.; Themistou, E.; Zou, J.; Das, B.P.; Tsianou, M.; Cheng, C. Facile Synthesis and Visualization of Janus Double-Brush Copolymers. ACS Macro Lett. 2012, 1, 52–56. [Google Scholar] [CrossRef]
- Cheng, C.; Yang, N.-L. Well-Defined Diblock Macromonomer with a Norbornene Group at Block Junction: Anionic Living Linking Synthesis and Ring-Opening Metathesis Polymerization. Macromolecules 2010, 43, 3153–3155. [Google Scholar] [CrossRef]
- Kawamoto, K.; Zhong, M.; Gadelrab, K.R.; Cheng, L.-C.; Ross, C.A.; Alexander-Katz, A.; Johnson, J.A. Graft-through Synthesis and Assembly of Janus Bottlebrush Polymers from A-Branch-B Diblock Macromonomers. J. Am. Chem. Soc. 2016, 138, 11501–11504. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.-C.; Kawamoto, K.; Gadelrab, K.R.; Johnson, J.A.; Alexander-Katz, A.; Ross, C.A. Templated Self-Assembly of a PS-Branch-PDMS Bottlebrush Copolymer. Nano Lett. 2018, 18, 4360–4369. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Hadjichristidis, N. Well-Defined Bilayered Molecular Cobrushes with Internal Polyethylene Blocks and ω-Hydroxyl-Functionalized Polyethylene Homobrushes. Macromolecules 2016, 49, 1590–1596. [Google Scholar] [CrossRef]
- Mah, A.H.; Afzali, P.; Qi, L.; Pesek, S.; Verduzco, R.; Stein, G.E. Bottlebrush Copolymer Additives for Immiscible Polymer Blends. Macromolecules 2018, 51, 5665–5675. [Google Scholar] [CrossRef]
- Radzinski, S.C.; Foster, J.C.; Chapleski, R.C.; Troya, D.; Matson, J.B. Bottlebrush Polymer Synthesis by Ring-Opening Metathesis Polymerization: The Significance of the Anchor Group. J. Am. Chem. Soc. 2016, 138, 6998–7004. [Google Scholar] [CrossRef]
- Lesne, T.; Heroguez, V.; Gnanou, Y.; Duplessix, R. Viscosimetric study of polystyrene polymacromonomer dilute solutions. Colloid. Polym. Sci. 2001, 279, 190–195. [Google Scholar] [CrossRef]
- Duplessix, R.; Heroguez, V. On the conformation and the structure of polymacromonomers. Eur. Phys. J. 2004, E15, 27–39. [Google Scholar] [CrossRef]
- Desvergne, S.; Heroguez, V.; Gnanou, Y.; Borsali, R. Polymacromonomers: Dynamics of Dilute and Nondilute Solutions. Macromolecules 2005, 38, 2400–2409. [Google Scholar] [CrossRef]
- Mah, A.H.; Mei, H.; Basu, P.; Laws, T.S.; Ruchhoeft, P.; Verduzco, R.; Stein, G.E. Swelling responses of surface-attached bottlebrush polymer networks. Soft Matter 2018, 14, 6728–6736. [Google Scholar] [CrossRef] [PubMed]
- Mitra, I.; Li, X.; Pesek, S.L.; Makarenko, B.; Lokitz, B.S.; Uhrig, D.; Ankner, J.F.; Verduzco, R.; Stein, G.E. Thin Film Phase Behavior of Bottlebrush/Linear Polymer Blends. Macromolecules 2014, 47, 5269–5276. [Google Scholar] [CrossRef]
- Czelusniak, I.; Khosravi, E.; Kenwright, A.M.; Ansell, C.W. Synthesis, Characterization, and Hydrolytic Degradation of Polylactide-Functionalized Polyoxanorbornenes. Macromolecules 2007, 40, 1444–1452. [Google Scholar] [CrossRef]
- Xia, Y.; Li, Y.; Burts, A.O.; Ottaviani, M.F.; Tirrell, D.A.; Johnson, J.A.; Turro, N.J.; Grubbs, R.H. EPR Study of Spin Labeled Brush Polymers in Organic Solvents. J. Am. Chem. Soc. 2011, 133, 19953–19959. [Google Scholar] [CrossRef]
- Ahn, S.; Carrillo, J.-M.Y.; Han, Y.; Kim, T.-H.; Uhrig, D.; Pickel, D.L.; Hong, K.; Kilbey, S.M.; Sumpter, B.G.; Smith, G.S.; et al. Structural Evolution of Polylactide Molecular Bottlebrushes: Kinetics Study by Size Exclusion Chromatography, Small Angle Neutron Scattering, and Simulations. ACS Macro Lett. 2014, 3, 862–866. [Google Scholar] [CrossRef]
- Zhang, Z.; Carrillo, J.-M.Y.; Ahn, S.; Wu, B.; Hong, K.; Smith, G.S.; Do, C. Atomistic Structure of Bottlebrush Polymers: Simulations and Neutron Scattering Studies. Macromolecules 2014, 47, 5808–5814. [Google Scholar] [CrossRef]
- Desmukh, P.; Gopinadhan, M.; Choo, Y.; Ahn, S.; Majewski, P.W.; Yoon, S.Y.; Bakajin, O.; Elimelech, M.; Osuji, C.O.; Kasi, R.M. Molecular Design of Liquid Crystalline Brush-Like Block Copolymers for Magnetic Field Directed Self-Assembly: A Platform for Functional Materials. ACS Macro Lett. 2014, 3, 462–466. [Google Scholar] [CrossRef]
- Gopinadhan, M.; Desmukh, P.; Choo, Y.; Majewski, P.W.; Bakajin, O.; Elimelech, M.; Kasi, R.M.; Osuji, C.O. Thermally Switchable Aligned Nanopores by Magnetic-Field Directed Self-Assembly of Block Copolymers. Adv. Mater. 2014, 26, 5148–5154. [Google Scholar] [CrossRef]
- Choo, Y.; Mahajan, L.H.; Gopinadhan, M.; Ndaya, D.; Desmukh, P.; Kasi, R.M.; Osuji, C.O. Phase Behavior of Polylactide-Based Liquid Crystalline Brushlike Block Copolymers. Macromolecules 2015, 48, 8315–8322. [Google Scholar] [CrossRef]
- Sutthasupa, S.; Sanda, F.; Faungnawakij, K.; Meepowpan, P. Synthesis and Copolymerization of Oligo(Lactic Acid) Derived Norbornene Macromonomers With Amino Acid Derived Norbornene Monomer: Formation of the 3D Macroporous Scaffold. J. Polym. Sci. Part A Polym. Chem. 2015, 53, 1660–1670. [Google Scholar] [CrossRef]
- Radzinski, S.C.; Foster, J.C.; Matson, J.B. Preparation of Bottlebrush Polymers via a One-Pot Ring-Opening Polymerization (ROP) and Ring-Opening Metathesis Polymerization (ROMP) Grafting-Through Strategy. Macromol. Rapid Commun. 2016, 37, 616–621. [Google Scholar] [CrossRef] [PubMed]
- Pesek, S.L.; Xiang, Q.; Hammouda, B.; Verduzco, R. Small-Angle Neutron Scattering Analysis of Bottlebrush Backbone and Side Chain Flexibility. J. Polym. Sci. Part A Polym. Chem. 2017, 55, 104–111. [Google Scholar] [CrossRef]
- Pesek, S.L.; Lin, Y.-H.; Mah, H.Z.; Kasper, W.; Chen, B.; Rohde, B.J.; Robertson, M.L.; Stein, G.E.; Verduzco, R. Synthesis of bottlebrush copolymers based on poly(dimethylsiloxane) for surface active additives. Polymer 2016, 98, 495–504. [Google Scholar] [CrossRef]
- Ahn, S.; Carrillo, J.-M.Y.; Keum, J.K.; Chen, J.; Uhrig, D.; Lokitz, B.S.; Sumpter, B.G.; Kilbey, S.M. Nanoporous Poly(3-hexylthiophene) Thin Film Structures from Self-Organization of a Tunable Molecular Bottlebrush Scaffold. Nanoscale 2017, 9, 7071–7080. [Google Scholar] [CrossRef] [PubMed]
- Gopinadhan, M.; Choo, Y.; Mahajan, L.H.; Ndaya, D.; Kaufman, G.; Rokhlenko, Y.; Kasi, R.M.; Osuji, C.O. Directing block copolymer self-assembly with permanent magnets: photopatterning microdomain alignment and generating oriented nanopores. Mol. Syst. Des. Eng. 2017, 2, 549–559. [Google Scholar] [CrossRef]
- Ndaya, D.; Bosire, R.; Mahajan, L.; Huh, S.; Kasi, R. Synthesis of ordered, functional, robust nanoporous membranes from liquid crystalline brush-like triblock copolymers. Polym. Chem. 2018, 9, 1404–1411. [Google Scholar] [CrossRef]
- Lin, T.-P.; Chang, A.B.; Chen, H.-Y.; Liberman-Martin, A.L.; Bates, C.M.; Voegtle, M.J.; Bauer, C.; Grubbs, R.H. Control of Grafting Density and Distribution in Graft Polymers by Living Ring-Opening Metathesis Copolymerization. J. Am. Chem. Soc. 2017, 139, 3896–3903. [Google Scholar] [CrossRef]
- Ahn, S.; Nam, J.; Zhu, J.; Lee, E.; Kilbey, S.M. Solution self-assembly of poly(3-hexylthiophene)-poly(lactide) brush copolymers: impact of side chain arrangement. Polym. Chem. 2018, 9, 3279–3286. [Google Scholar] [CrossRef]
- Sutthasupa, S.; Sanda, F. Macroporous scaffolds: Molecular brushes based on oligo(lactic acid)–amino acid–indomethacin conjugated poly(norbornene)s. Eur. Polym. J. 2018, 98, 162–171. [Google Scholar] [CrossRef]
- Isono, T.; Kondo, Y.; Ozawa, S.; Chen, Y.; Sakai, R.; Sato, S.-I.; Tajima, K.; Kakuchi, T.; Satoh, T. Stereoblock-like Brush Copolymers Consisting of Poly(L-lactide) and Poly(D-lactide) Side Chains along Poly(norbornene) Backbone: Synthesis, Stereocomplex Formation, and Structure-Property Relationship. Macromolecules 2014, 47, 7118–7128. [Google Scholar] [CrossRef]
- Veccharelli, K.M.; Tong, V.K.; Young, J.L.; Yang, J.; Gianneschi, N.C. Dual responsive polymeric nanoparticles prepared by direct functionalization of polylactic acid-based polymers via graft-from ring opening metathesis polymerization. Chem. Comm. 2015, 52, 567–570. [Google Scholar] [CrossRef] [PubMed]
- Leroux, F.; Montembault, V.; Pioge, S.; Pascual, S.; Fontaine, L. Poly(1,4-butadiene)-graft-poly(L-lactide) via the grafting-from strategy. Polym. Bull. 2017, 74, 4415–4422. [Google Scholar] [CrossRef]
- Choinopoulos, I.; Koinis, S.; Pitsikalis, M. Synthesis and Characterization of Chiral Poly(L-lactide-b-hexyl isocyanate) Macromonomers with Norbornenyl End Groups and Their Homopolymerization Through Ring Opening Metathesis Polymerization to Afford Polymer Brushes. J. Polym. Sci. Part A Polym. Chem. 2017, 55, 1102–1112. [Google Scholar] [CrossRef]
- Xie, M.; Dang, J.; Han, H.; Wang, W.; Liu, j.; He, X.; Zhang, Y. Well-Defined Brush Copolymers with High Grafting Density of Amphiphilic Side Chains by Combination of ROP, ROMP, and ATRP. Macromolecules 2008, 41, 9004–9010. [Google Scholar] [CrossRef]
- N’Guyen, D.A.; Leroux, F.; Montembault, V.; Pascual, S.; Fontaine, L. Synthesis and characterization of high grafting density bottle-brush poly(oxa)norbornene-g-poly(ε-caprolactone). Polym. Chem. 2016, 7, 1730–1738. [Google Scholar] [CrossRef]
- Yao, T.; Chen, Y.; Zhang, J.; Bunyard, C.; Tang, C. Cationic Salt-Responsive Bottle-Brush Polymers. Macromol. Rapid Commun. 2013, 34, 645–651. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Ren, J.M.; Qiao, G.G. Synthesis of novel cylindrical bottlebrush polypseudorotaxane via inclusion complexation of high density poly(3-caprolactone) bottlebrush polymer and a-cyclodextrins. Polym. Chem. 2012, 3, 343–351. [Google Scholar] [CrossRef]
- Leroux, F.; Montembault, V.; Pioge, S.; Pascual, S.; Brotons, G.; Fontaine, L. High Molar Mass Poly(1,4-butadiene)-graft-poly(ε-caprolactone) Copolymers by ROMP: Synthesis via the Grafting-From Route and Self-Assembling Properties. Macromolecules 2016, 49, 4739–4745. [Google Scholar] [CrossRef]
- Li, H.; Zhang, W.; Wang, Y.; He, B. Synthesis of comb graft copolymers I—Ring-opening metathesis of norbornyl-polymethacrylate by a supported ruthenium carbene complex generated in situ. Polym. Adv. Technol. 2003, 14, 226–231. [Google Scholar] [CrossRef]
- Li, A.; Ma, J.; Sun, G.; Li, Z.; Cho, S.; Clark, C.; Wooley, K.L. One-Pot, Facile Synthesis of Well-Defined Molecular Brush Copolymers by a Tandem RAFT and ROMP, ‘‘Grafting-Through’’ Strategy. J. Polym. Sci. Part A Polym. Chem. 2012, 50, 1681–1688. [Google Scholar] [CrossRef]
- Cheng, C.; Qi, K.; Khosdel, E.; Wooley, K.L. Tandem Synthesis of Core–shell Brush Copolymers and Their Transformation to Peripherally Cross-Linked and Hollowed Nanostructures. J. Am. Chem. Soc. 2006, 128, 6808–6809. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Qi, K.; Germack, D.S.; Khosdel, E.; Wooley, K.L. Synthesis of Core-Crosslinked Nanoparticles with Controlled Cylindrical Shape and Narrowly-Dispersed Size via Core–shell Brush Block Copolymer Templates. Adv. Mater. 2007, 19, 2830–2835. [Google Scholar] [CrossRef]
- Morandi, G.; Piogé, S.; Pascual, S.; Montembault, V.; Legoupy, S.; Fontaine, L. ATRP and ROMP: Modular chemical tools for advanced macromolecular engineering. Mater. Sci. Eng. C 2009, 29, 367–371. [Google Scholar] [CrossRef]
- Ding, L.; Qiu, J.; Wei, J.; Zhu, Z. Facile Synthesis of Brush Poly(phosphoamidate)s via One-Pot Tandem Ring-Opening Metathesis Polymerization and Atom Transfer Radical Polymerization. Macromol. Rapid Commun. 2014, 35, 1509–1515. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Khoshdel, E.; Wooley, K.L. Facile One-Pot Synthesis of Brush Polymers through Tandem Catalysis Using Grubbs’ Catalyst for Both Ring-Opening Metathesis and Atom Transfer Radical Polymerizations. Nano Lett. 2006, 6, 1741–1746. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.M.; Ishitake, K.; Satoh, K.; Blencowe, A.; Fu, Q.; Wong, E.; Kamigaito, M.; Qiao, G.G. Stereoregular High-Density Bottlebrush Polymer and Its Organic Nanocrystal Stereocomplex through Triple-Helix Formation. Macromolecules 2016, 49, 788–795. [Google Scholar] [CrossRef]
- Ren, J.M.; Subbiah, J.; Zhang, B.; Ishitake, K.; Satoh, K.; Kamigaito, M.; Qiao, G.G.; Wong, E.H.H.; Wong, W.W.H. Fullerene peapod nanoparticles as an organic semiconductor–electrode interface layer. Chem. Commun. 2016, 52, 3356–3359. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Wang, W.; Wang, Y.; Zhu, J.; Uhrig, D.; Lu, X.; Keum, J.K.; Mays, J.W.; Hong, K. Fluorinated bottlebrush polymers based on poly(trifluoroethyl methacrylate): synthesis and characterization. Polym. Chem. 2016, 7, 680–688. [Google Scholar] [CrossRef]
- Borodinov, N.; Belianinov, A.; Chang, D.; Carrillo, J.-M.; Burch, M.J.; Xu, Y.; Hong, K.; Ievlev, A.V.; Sumpter, B.G.; Ovchinnikova, O.S. Molecular reorganization in bulk bottlebrush polymers: direct observation via nanoscale imaging. Nanoscale 2018, 10, 18001–18009. [Google Scholar] [CrossRef]
- Sun, G.; Cho, S.; Yang, F.; He, X.; Pavia-Sanders, A.; Clark, C.; Raymond, J.E.; Verkhoturov, S.V.; Schweikert, E.A.; Thackeray, J.W.; et al. Advanced Photoresist Technologies by Intricate Molecular Brush Architectures: Diblock Brush Terpolymer-Based Positive-Tone Photoresist Materials. J. Polym. Sci. Part A Polym. Chem. 2015, 53, 193–199. [Google Scholar] [CrossRef]
- Qiao, Y.; Islam, M.S.; Yin, X.; Han, K.; Yan, Y.; Zhang, J.; Wang, Q.; Ploehn, H.J.; Tang, C. Oligothiophene-containing polymer brushes by ROMP and RAFT: Synthesis, characterization and dielectric properties. Polymer 2015, 72, 428–435. [Google Scholar] [CrossRef]
- Sukegawa, T.; Masuko, I.; Oyaizu, K.; Nishide, H. Expanding the Dimensionality of Polymers Populated with Organic Robust Radicals toward Flow Cell Application: Synthesis of TEMPO-Crowded Bottlebrush Polymers Using Anionic Polymerization and ROMP. Macromolecules 2014, 47, 8611–8617. [Google Scholar] [CrossRef]
- Arrington, K.J.; Radzinski, S.C.; Drummey, K.J.; Long, T.E.; Matson, J.B. Reversibly Cross-linkable Bottlebrush Polymers as Pressure-Sensitive Adhesives. ACS Appl. Mater. Interfaces 2018, 10, 26662–26668. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Ye, Q.; Han, X.; Zhou, F. Step-by-step build-up of ordered p–n heterojunctions at nanoscale for efficient light harvesting. RSC Adv. 2013, 3, 166–171. [Google Scholar] [CrossRef]
- Ahn, S.; Pickel, D.L.; Kochemba, W.M.; Chen, J.; Uhrig, D.; Hinestrosa, J.P.; Carillo, J.-M.; Shao, M.; Do, C.; Messman, J.M.; et al. Poly(3-hexylthiophene) Molecular Bottlebrushes via Ring-Opening Metathesis Polymerization: Macromolecular Architecture Enhanced Aggregation. ACS Macro Lett. 2013, 2, 761–765. [Google Scholar] [CrossRef]
- Yin, X.; Qiao, Y.; Gadinski, M.R.; Wang, Q.; Tang, C. Flexible Thiophene Polymers: A Concerted Macromolecular Architecture for Dielectrics. Polym. Chem. 2016, 7, 2929–2933. [Google Scholar] [CrossRef]
- Rokhlenko, Y.; Kawamoto, K.; Johnson, J.A.; Osuji, C.O. Sub-10 nm Self-Assembly of Mesogen-Containing Grafted Macromonomers and Their Bottlebrush Polymers. Macromolecules 2018, 51, 3680–3690. [Google Scholar] [CrossRef]
- Miyake, G.M.; Weitekamp, R.A.; Piunova, V.A.; Grubbs, R.H. Synthesis of Isocyanate-Based Brush Block Copolymers and Their Rapid Self-Assembly to Infrared-Reflecting Photonic Crystals. J. Am. Chem. Soc. 2012, 134, 14249–14254. [Google Scholar] [CrossRef]
- Foster, J.C.; Radzinski, S.C.; Lewis, S.E.; Slutzker, M.B.; Matson, J.B. Norbornene-containing dithiocarbamates for use in reversible additionefragmentation chain transfer (RAFT) polymerization and ring-opening metathesis polymerization (ROMP). Polymer 2015, 79, 205–211. [Google Scholar] [CrossRef]
- Yang, B.; Abel, B.A.; McCormick, C.L.; Storey, R.F. Synthesis of Polyisobutylene Bottlebrush Polymers via Ring-Opening Metathesis Polymerization. Macromolecules 2017, 50, 7458–7467. [Google Scholar] [CrossRef]
- Jiang, Z.-Q.; Xue, Y.-X.; Chen, J.-L.; Yu, Z.-P.; Liu, N.; Yin, J.; Zhu, Y.-Y.; Wu, Z.-Q. One-Pot Synthesis of Brush Copolymers Bearing Stereoregular Helical Polyisocyanides as Side Chains through Tandem Catalysis. Macromolecules 2015, 48, 81–89. [Google Scholar] [CrossRef]
- Allcock, H.R.; Denus, C.R.; Prange, R.; Laredo, W.R. Synthesis of Norbornenyl Telechelic Polyphosphazenes and Ring-Opening Metathesis Polymerization Reactions. Macromolecules 2001, 34, 2757–2765. [Google Scholar] [CrossRef]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choinopoulos, I. Grubbs’ and Schrock’s Catalysts, Ring Opening Metathesis Polymerization and Molecular Brushes—Synthesis, Characterization, Properties and Applications. Polymers 2019, 11, 298. https://doi.org/10.3390/polym11020298
Choinopoulos I. Grubbs’ and Schrock’s Catalysts, Ring Opening Metathesis Polymerization and Molecular Brushes—Synthesis, Characterization, Properties and Applications. Polymers. 2019; 11(2):298. https://doi.org/10.3390/polym11020298
Chicago/Turabian StyleChoinopoulos, Ioannis. 2019. "Grubbs’ and Schrock’s Catalysts, Ring Opening Metathesis Polymerization and Molecular Brushes—Synthesis, Characterization, Properties and Applications" Polymers 11, no. 2: 298. https://doi.org/10.3390/polym11020298
APA StyleChoinopoulos, I. (2019). Grubbs’ and Schrock’s Catalysts, Ring Opening Metathesis Polymerization and Molecular Brushes—Synthesis, Characterization, Properties and Applications. Polymers, 11(2), 298. https://doi.org/10.3390/polym11020298