Stretching Wormlike Chains in Narrow Tubes of Arbitrary Cross-Sections
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model
2.2. Brownian Dynamics Simulations
- (a)
- Polygonal tubes
- (b)
- Elliptic tubes
- (c)
- Wavy tubes
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Dai, L.; Renner, C.B.; Doyle, P.S. The polymer physics of single DNA confined in nanochannels. Adv. Colloid Interface Sci. 2016, 232, 80–100. [Google Scholar] [CrossRef] [PubMed]
- Cheong, G.K.; Li, X.; Dorfman, K.D. Wall depletion length of a channel-confined polymer. Phys. Rev. E 2017, 95, 022501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tree, D.R.; Wang, Y.; Dorfman, K.D. Mobility of a semiflexible chain confined in a nanochannel. Phys. Rev. Lett. 2012, 108, 228105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peters, J.P.; Yelgaonkar, S.P.; Srivatsan, S.G.; Tor, Y.; James Maher, L., III. Mechanical properties of DNA-like polymers. Nucleic Acids Res. 2013, 41, 10593–10604. [Google Scholar] [CrossRef]
- Gao, J.; Tang, P.; Yang, Y.; Chen, J.Z. Free energy of a long semiflexible polymer confined in a spherical cavity. Soft Matter 2014, 10, 4674–4685. [Google Scholar] [CrossRef]
- Chuang, H.M.; Reifenberger, J.G.; Cao, H.; Dorfman, K.D. Sequence-Dependent Persistence Length of Long DNA. Phys. Rev. Lett. 2017, 119, 227802. [Google Scholar] [CrossRef] [Green Version]
- Hastie, A.R.; Dong, L.; Smith, A.; Finklestein, J.; Lam, E.T.; Huo, N.; Cao, H.; Kwok, P.Y.; Deal, K.R.; Dvorak, J.; et al. Rapid genome mapping in nanochannel arrays for highly complete and accurate de novo sequence assembly of the complex Aegilops tauschii genome. PLoS ONE 2013, 8, e55864. [Google Scholar] [CrossRef]
- Persson, F.; Tegenfeldt, J.O. DNA in nanochannels—Directly visualizing genomic information. Chem. Soc. Rev. 2010, 39, 985–999. [Google Scholar] [CrossRef]
- Wang, Y.; Tree, D.R.; Dorfman, K.D. Simulation of DNA Extension in Nanochannels. Macromolecules 2011, 44, 6594–6604. [Google Scholar] [CrossRef] [Green Version]
- Tree, D.R.; Wang, Y.; Dorfman, K.D. Modeling the relaxation time of DNA confined in a nanochannel. Biomicrofluidics 2013, 7, 054118. [Google Scholar] [CrossRef] [Green Version]
- Yin, Z.; Wang, W. Structure-Induced Method for Circular Cross-Sectional Nanochannel Fabrication. J. Nanosci. Nanotechnol. 2019, 19, 5750–5754. [Google Scholar] [CrossRef] [PubMed]
- Polson, J.M. Free Energy of a Folded Semiflexible Polymer Confined to a Nanochannel of Various Geometries. Macromolecules 2018, 51, 5962–5971. [Google Scholar] [CrossRef] [Green Version]
- Kubota, T.; Lloyd, K.; Sakashita, N.; Minato, S.; Ishida, K.; Mitsui, T. Clog and Release, and Reverse Motions of DNA in a Nanopore. Polymers 2019, 11, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krog, J.; Alizadehheidari, M.; Werner, E.; Bikkarolla, S.K.; Tegenfeldt, J.O.; Mehlig, B.; Lomholt, M.A.; Westerlund, F.; Ambjornsson, T. Stochastic unfolding of nanoconfined DNA: Experiments, model and Bayesian analysis. J. Chem. Phys. 2018, 149, 215101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lam, E.T.; Hastie, A.; Lin, C.; Ehrlich, D.; Das, S.K.; Austin, M.D.; Deshpande, P.; Cao, H.; Nagarajan, N.; Xiao, M.; et al. Genome mapping on nanochannel arrays for structural variation analysis and sequence assembly. Nat. Biotechnol. 2012, 30, 771–776. [Google Scholar] [CrossRef]
- Dorfman, K.D. The Fluid Mechanics of Genome Mapping. AIChE J. 2013, 59, 346–354. [Google Scholar] [CrossRef] [Green Version]
- Dorfman, K.D.; King, S.B.; Olson, D.W.; Thomas, J.D.; Tree, D.R. Beyond gel electrophoresis: Microfluidic separations, fluorescence burst analysis, and DNA stretching. Chem. Rev. 2013, 113, 2584–2667. [Google Scholar] [CrossRef]
- Reisner, W.; Larsen, N.B.; Silahtaroglu, A.; Kristensen, A.; Tommerup, N.; Tegenfeldt, J.O.; Flyvbjerg, H. Single-molecule denaturation mapping of DNA in nanofluidic channels. Proc. Natl. Acad. Sci. USA 2010, 107, 13294–13299. [Google Scholar] [CrossRef] [Green Version]
- Marie, R.; Pedersen, J.N.; Bauer, D.L.; Rasmussen, K.H.; Yusuf, M.; Volpi, E.; Flyvbjerg, H.; Kristensen, A.; Mir, K.U. Integrated view of genome structure and sequence of a single DNA molecule in a nanofluidic device. Proc. Natl. Acad. Sci. USA 2013, 110, 4893–4898. [Google Scholar] [CrossRef] [Green Version]
- Odijk, T. Theory of Lyotropic Polymer Liquid-Crystals. Macromolecules 1986, 19, 2313–2329. [Google Scholar] [CrossRef]
- Odijk, T. Physics of Tightly Curved Semiflexible Polymer-Chains. Macromolecules 1993, 26, 6897–6902. [Google Scholar] [CrossRef] [Green Version]
- Odijk, T. On the Statistics and Dynamics of Confined or Entangled Stiff Polymers. Macromolecules 1983, 16, 1340–1344. [Google Scholar] [CrossRef]
- De Gennes, P.G. Scaling Concepts in Polymer Physics; Cornell University Press: New York, NY, USA, 1979. [Google Scholar]
- Dai, L.; van der Maarel, J.R.C.; Doyle, P.S. Extended de Gennes Regime of DNA Confined in a Nanochannel. Macromolecules 2014, 47, 2445–2450. [Google Scholar] [CrossRef] [Green Version]
- Werner, E.; Mehlig, B. Confined polymers in the extended de Gennes regime. Phys. Rev. E 2014, 90, 062602. [Google Scholar] [CrossRef] [Green Version]
- Smithe, T.S.; Iarko, V.; Muralidhar, A.; Werner, E.; Dorfman, K.D.; Mehlig, B. Finite-size corrections for confined polymers in the extended de Gennes regime. Phys. Rev. E 2015, 92, 062601. [Google Scholar] [CrossRef] [Green Version]
- Odijk, T. Scaling theory of DNA confined in nanochannels and nanoslits. Phys. Rev. E 2008, 77, 060901. [Google Scholar] [CrossRef] [Green Version]
- Odijk, T. DNA confined in nanochannels: Hairpin tightening by entropic depletion. J. Chem. Phys. 2006, 125, 204904. [Google Scholar] [CrossRef] [Green Version]
- Muralidhar, A.; Tree, D.R.; Dorfman, K.D. Backfolding of Wormlike Chains Confined in Nanochannels. Macromolecules 2014, 47, 8446–8458. [Google Scholar] [CrossRef]
- Muralidhar, A.; Dorfman, K.D. Backfolding of DNA Confined in Nanotubes: Flory Theory versus the Two-State Cooperativity Model. Macromolecules 2016, 49, 1120–1126. [Google Scholar] [CrossRef]
- Bleha, T.; Cifra, P. Stretching and compression of DNA by external forces under nanochannel confinement. Soft Matter 2018, 14, 1247–1259. [Google Scholar] [CrossRef]
- Wang, J.; Gao, H. Stretching a stiff polymer in a tube. J. Mater. Sci. 2007, 42, 8838–8843. [Google Scholar] [CrossRef]
- Li, R.; Wang, J. Stretching a Semiflexible Polymer in a Tube. Polymers 2016, 8, 328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.Z.; Li, R.H. Stretching strongly confined semiflexible polymer chain. Appl. Math. Mech. 2014, 35, 1233–1238. [Google Scholar] [CrossRef]
- Wang, J.; Li, K. Statistical Behaviors of Semiflexible Polymer Chains Stretched in Rectangular Tubes. Polymers 2019, 11, 260. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Gao, H. A generalized bead-rod model for Brownian dynamics simulations of wormlike chains under strong confinement. J. Chem. Phys. 2005, 123, 084906. [Google Scholar] [CrossRef]
- Su, T.; Das, S.K.; Xiao, M.; Purohit, P.K. Transition between two regimes describing internal fluctuation of DNA in a nanochannel. PLoS ONE 2011, 6, e16890. [Google Scholar] [CrossRef]
- Su, T.; Purohit, P.K. Entropically driven motion of polymers in nonuniform nanochannels. Phys. Rev. E 2011, 83, 061906. [Google Scholar] [CrossRef] [Green Version]
- Bailey, B.L.; Visscher, K.; Watkins, J. A stochastic model of translation with -1 programmed ribosomal frameshifting. Phys. Biol. 2014, 11, 016009. [Google Scholar] [CrossRef]
- De Haan, H.W.; Shendruk, T.N. Force–Extension for DNA in a Nanoslit: Mapping between the 3D and 2D Limits. ACS Macro Lett. 2015, 4, 632–635. [Google Scholar] [CrossRef]
- Marko, J.F.; Siggia, E.D. Stretching DNA. Macromolecules 1995, 28, 8759–8770. [Google Scholar] [CrossRef]
- Rosa, A.; Hoang, T.; Marenduzzo, D.; Maritan, A. A new interpolation formula for semiflexible polymers. Biophys. Chem. 2005, 115, 251–254. [Google Scholar] [CrossRef] [PubMed]
- Taloni, A.; Yeh, J.W.; Chou, C.F. Scaling Theory of Stretched Polymers in Nanoslits. Macromolecules 2013, 46, 7989–8002. [Google Scholar] [CrossRef]
- Reinhart, W.F.; Tree, D.R.; Dorfman, K.D. Entropic depletion of DNA in triangular nanochannels. Biomicrofluidics 2013, 7, 24102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manneschi, C.; Angeli, E.; Ala-Nissila, T.; Repetto, L.; Firpo, G.; Valbusa, U. Conformations of DNA in Triangular Nanochannels. Macromolecules 2013, 46, 4198–4206. [Google Scholar] [CrossRef]
- Park, K.D.; Lee, S.W.; Takama, N.; Fujii, T.; Kim, B.J. Arbitrary-shaped nanochannels fabricated by polymeric deformation to achieve single DNA stretching. Microelectron. Eng. 2009, 86, 1385–1388. [Google Scholar] [CrossRef]
- Huh, D.; Mills, K.L.; Zhu, X.; Burns, M.A.; Thouless, M.D.; Takayama, S. Tuneable elastomeric nanochannels for nanofluidic manipulation. Nat. Mater. 2007, 6, 424–428. [Google Scholar] [CrossRef]
- Angeli, E.; Manneschi, C.; Repetto, L.; Firpo, G.; Valbusa, U. DNA manipulation with elastomeric nanostructures fabricated by soft-moulding of a FIB-patterned stamp. Lab. Chip 2011, 11, 2625–2629. [Google Scholar] [CrossRef]
- Fanzio, P.; Mussi, V.; Manneschi, C.; Angeli, E.; Firpo, G.; Repetto, L.; Valbusa, U. DNA detection with a polymeric nanochannel device. Lab. Chip 2011, 11, 2961–2966. [Google Scholar] [CrossRef]
- Peters, E.A.; Barenbrug, T.M. Efficient Brownian dynamics simulation of particles near walls. I. Reflecting and absorbing walls. Phys. Rev. E 2002, 66, 056701. [Google Scholar] [CrossRef] [Green Version]
- Burkhardt, T.W. Harmonically Confined, Semiflexible Polymer in a Channel: Response to a Stretching Force and Spatial Distribution of the Endpoints. J. Stat. Phys. 2011, 145, 1472–1484. [Google Scholar] [CrossRef] [Green Version]
- Rubinstein, M.; Colby, R.H. Polymer Physics; Oxford University Press: New York, NY, USA, 2003; Volume 23. [Google Scholar]
- Doi, M.; Edwards, S.F. The Theory of Polymer Dynamics; Oxford University Press: New York, NY, USA, 1988; Volume 73. [Google Scholar]
- Kratky, O.; Porod, G. Röntgenuntersuchung gelöster fadenmoleküle. Recl. Trav. Chim. Pays Bas 1949, 68, 1106–1122. [Google Scholar] [CrossRef]
- Burkhardt, T.W. Free energy of a semiflexible polymer in a tube and statistics of a randomly-accelerated particle. J. Phys. A Math. Gen. 1997, 30, L167–L172. [Google Scholar] [CrossRef]
- Burkhardt, T.W. Free energy of a semiflexible polymer confined along an axis. J. Phys. A Math. Gen. 1995, 28, L629–L635. [Google Scholar] [CrossRef]
- Lifshitz, E.M.; Pitaevskii, L.P. Statistical Physics: Theory of the Condensed State; Elsevier: Amsterdam, The Netherlands, 2013; Volume 9. [Google Scholar]
- Wang, J.; Gao, H. Brownian dynamics simulations of charged semiflexible polymers confined to curved surfaces. J. Mech. Behav. Biomed. Mater. 2011, 4, 174–179. [Google Scholar] [CrossRef]
- Deutch, J.; Oppenheim, I. Molecular theory of Brownian motion for several particles. J. Chem. Phys. 1971, 54, 3547–3555. [Google Scholar] [CrossRef]
- Ermak, D.L.; McCammon, J.A. Brownian dynamics with hydrodynamic interactions. J. Chem. Phys. 1978, 69, 1352–1360. [Google Scholar] [CrossRef]
- Hess, B.; Bekker, H.; Berendsen, H.J.C.; Fraaije, J.G.E.M. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 1997, 18, 1463–1472. [Google Scholar] [CrossRef]
- Bertsekas, D.P. Constrained Optimization and Lagrange Multiplier Methods; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Wang, J. Stretching Wormlike Chains in Narrow Tubes of Arbitrary Cross-Sections. Polymers 2019, 11, 2050. https://doi.org/10.3390/polym11122050
Li M, Wang J. Stretching Wormlike Chains in Narrow Tubes of Arbitrary Cross-Sections. Polymers. 2019; 11(12):2050. https://doi.org/10.3390/polym11122050
Chicago/Turabian StyleLi, Ming, and Jizeng Wang. 2019. "Stretching Wormlike Chains in Narrow Tubes of Arbitrary Cross-Sections" Polymers 11, no. 12: 2050. https://doi.org/10.3390/polym11122050
APA StyleLi, M., & Wang, J. (2019). Stretching Wormlike Chains in Narrow Tubes of Arbitrary Cross-Sections. Polymers, 11(12), 2050. https://doi.org/10.3390/polym11122050