Hydroxyl-Terminated Triazine Derivatives Grafted Graphene Oxide for Epoxy Composites: Enhancement of Interfacial and Mechanical Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of GO by Oxidation of Graphite
2.3. Functionalization of GO by Grafting TCT and Tris
2.4. Fabrication of GO-TCT-Tris/Epoxy Composites
2.5. Characterization
3. Results
3.1. Characterization of GO
3.2. Morphologies of GO Sheets
3.3. Thermal Stability of GO Sheets
3.4. Dispersion of GO Derivate Sheets in Solvent and Epoxy Matrix
3.5. Mechanical Properties of Composites
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Azimi, R.; Mamaqani, H.; Gholipour, M. Grafting poly (amidoamine) dendrimer-modified silica nanoparticles to graphene oxide for preparation of a composite and curing agent for epoxy resin. Polymer 2017, 126, 152–161. [Google Scholar] [CrossRef]
- Ramezanzadeh, B.; Ghasemi, E.; Mahdavian, M.; Changizi, E.; Moghadam, M.M. Characterization of covalently-grafted polyisocyanate chains onto graphene oxide for polyurethane composites with improved mechanical properties. Chem. Eng. J. 2015, 281, 869–883. [Google Scholar] [CrossRef]
- Ma, L.; Zhu, Y.; Wang, M.; Yang, X.; Song, G.; Huang, Y. Enhancing interfacial strength of epoxy resin composites via evolving hyperbranched amino-terminated POSS on carbon fiber surface. Compos. Sci. Technol. 2019, 170, 148–156. [Google Scholar] [CrossRef]
- Shi, L.; Ma, L.; Li, P.; Song, G. The effect of self-synthesized hydroxyl-terminated hyperbranched polymer interface layer on the properties of carbon fiber reinforced epoxy composites. Appl. Surf. Sci. 2019, 479, 334–343. [Google Scholar] [CrossRef]
- Wu, G.; Ma, L.; Jiang, H.; Liu, L.; Huang, Y. Improving the interfacial strength of silicone resin composites by chemically grafting silica nanoparticles on carbon fiber. Compos. Sci. Technol. 2017, 153, 160–167. [Google Scholar] [CrossRef]
- Haeri, S.; Ramezanzadeh, B.; Asghari, M. A novel fabrication of a high performance SiO2-graphene oxide (GO) nanohybrids: Characterization of thermal properties of epoxy nanocomposites filled with SiO2-GO nanohybrids. J. Colloid Interface Sci. 2017, 493, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Stankovich, S.; Dikin, D.A.; Dommett, G.; Kohlhaas, K.; Zimney, E.; Stach, E. Graphene-based composite materials. Nature 2006, 442, 282–286. [Google Scholar] [CrossRef] [PubMed]
- Ramanathan, T.; Abdala, A.; Stankovich, S.; Dikin, D.; Herrera Alonso, M.; Piner, R. Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol. 2008, 3, 327–331. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Chen, L.; Liu, L. Effects of silanization and silica enrichment of carbon fibers on interfacial properties of methylphenylsilicone resin composites. Compos. Part A 2017, 98, 159–165. [Google Scholar] [CrossRef]
- Chen, J.; Wang, K.; Zhao, Y. Enhanced interfacial interactions of carbon fiber reinforced PEEK composites by regulating PEI and graphene oxide complex sizing at the interface. Compos. Sci. Technol. 2018, 154, 175–186. [Google Scholar] [CrossRef]
- Ma, L.; Zhu, Y.; Feng, P.; Song, G.; Huang, Y.; Liu, H. Reinforcing carbon fiber epoxy composites with triazine derivatives functionalized graphene oxide modified sizing agent. Compos. Part B 2019, 176, 107078. [Google Scholar] [CrossRef]
- Jiang, T.; Kuila, T.; Kim, N.; Lee, J. Effects of surface-modified silica nanoparticles attached graphene oxide using isocyanate-terminated flexible polymer chains on the mechanical properties of epoxy composites. J. Mater. Chem. A 2014, 2, 10557–10567. [Google Scholar] [CrossRef]
- Zhang, T.; Huang, W.; Zhang, N.; Huang, T.; Yang, J.; Wang, Y. Grafting of polystyrene onto reduced graphene oxide by emulsion polymerization for dielectric polymer composites: High dielectric constant and low dielectric loss tuned by varied grafting amount of polystyrene. Eur. Polym. J. 2017, 94, 196–207. [Google Scholar] [CrossRef]
- Liu, Q.; Li, L.; Jin, X.; Wang, C.; Wang, T. Influence of graphene oxide sheets on the pore structure and filtration performance of a novel graphene oxide/silica/polyacrylonitrile mixed matrix membrane. J. Mater. Sci. 2018, 53, 6505–6518. [Google Scholar] [CrossRef]
- Teng, C.; Ma, C.; Lu, C.; Yang, S. Thermal conductivity and structure of non-covalent functionalized graphene/epoxy composites. Carbon 2011, 49, 5107–5116. [Google Scholar] [CrossRef]
- McAllister, M.; Li, J.; Adamson, D.; Schniepp, H.; Abdala, A. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 2007, 19, 4396–43404. [Google Scholar] [CrossRef]
- Lei, L.; Shan, J.; Hu, J.; Liu, X.; Zhao, J.; Tong, Z. Co-curing effect of imidazole grafting graphene oxide synthesized by one-pot method to reinforce epoxy nanocomposites. Compos. Sci. Technol. 2016, 128, 161–168. [Google Scholar] [CrossRef]
- Liu, C.; Yan, H.; Yuan, L.; Chen, Z.; Zhang, M. Hyperbranched polytriazine grafted reduced graphene oxide and its application. J. Polym. Sci. Part A Polym. Chem. 2015, 53, 2132–2140. [Google Scholar] [CrossRef]
- Liu, T.; Zhao, Z.; Tjiu, W.; Lv, J.; Wei, C. Preparation and characterization of epoxy nanocomposites containing surface-modified graphene oxide. J. Appl. Polym. Sci. 2014, 131, 40326–40332. [Google Scholar] [CrossRef]
- Wan, Y.; Tang, L.; Gong, L.; Yan, D.; Li, B.; Wu, L.; Jiang, J.; Lai, G. Grafting of epoxy chains onto graphene oxide for epoxy composites with improved mechanical and thermal properties. Carbon 2014, 69, 467–480. [Google Scholar] [CrossRef]
- Katti, P.; Kundan, K.; Kumar, S.; Bose, S. Improved mechanical properties through engineering the interface by poly (ether ether ketone) grafted graphene oxide in epoxy based nanocomposites. Polymer 2017, 122, 184–193. [Google Scholar] [CrossRef]
- Wang, H.; Bi, S.; Ye, Y.; Xue, Y.; Xie, X.; Mai, Y. An effective non-covalent grafting approach to functionalize individually dispersed reduced graphene oxide sheets with high grafting density, solubility and electrical conductivity. Nanoscale 2015, 7, 3548–3557. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Yang, X.; Bao, F.; Pan, Y.; Wang, C.; Chen, B. Improved Mechanical Properties of Copoly(Phthalazinone Ether Sulphone)s Composites Reinforced by Multiscale Carbon Fibre/Graphene Oxide Reinforcements: A Step Closer to Industrial Production. Polymers 2019, 11, 237. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, H.; Silva, W.; Neves, J.; Calado, H.; Paniago, R. Multifunctional nanocomposites based on tetraethylenepentamine-modified graphene oxide/epoxy. Polym. Test. 2015, 43, 182–192. [Google Scholar] [CrossRef]
- Guo, S.; Ma, L.; Song, G.; Li, X.; Li, P.; Huang, Y. Covalent grafting of triazine derivatives onto graphene oxide for preparation of epoxy composites with improved interfacial and mechanical properties. J. Mater. Sci. 2018, 24, 16318–16330. [Google Scholar] [CrossRef]
- Ribeiro, A.; Azizi, G. Immobilized Pd nanoparticles on Tris-modified SiO2: Synthesis, characterization, and catalytic activity in Heck cross-coupling reactions. Chin. J. Catal. 2014, 35, 1547–1554. [Google Scholar]
- Wang, J.; Feng, D.; Cheng, R.; Zou, L.; Zhang, J. Preparation of Graphene by Oxidation-Reduction Method. Asian J. Chem. 2014, 26, 1701–1703. [Google Scholar] [CrossRef]
- Luo, J.; Yang, S.; Lei, L. Toughening, synergistic fire retardation and water resistance of polydimethylsiloxane grafted graphene oxide to epoxy nanocomposites with trace phosphorus. Compos. A 2017, 100, 275–284. [Google Scholar] [CrossRef]
- Hussain, S.; Yorucu, C.; Ahmed, I.; Hussain, R.; Chen, B.; Siddique, N. Surface modification of aramid fibres by graphene oxide nano-sheets for multiscale polymer composites. Surf. Coat. Technol. 2014, 258, 458–466. [Google Scholar] [CrossRef]
- Ma, L.; Wu, G.; Song, G. Modification of carbon fibers surfaces with polyetheramines: The role of interphase microstructure on adhesion properties of CF/Epoxy composites. Polym. Compos. 2018, 39, E2346–E2355. [Google Scholar] [CrossRef]
- Wang, M.; Ma, L.; Shi, L.; Feng, P.; Song, G. Chemical grafting of nano-SiO2 onto graphene oxide via thiol-ene click chemistry and its effect on the interfacial and mechanical properties of GO/epoxy composites. Compos. Sci. Technol. 2019, 182, 107751. [Google Scholar] [CrossRef]
- Wu, G.; Ma, L.; Jiang, H.; Liu, L. Directly grafting octa(aminophenyl) polyhedral oligomeric silsesquioxane onto carbon fibers for superior interfacial strength and hydrothermal aging resistance of silicone resin composites. Constr. Build. Mater. 2017, 157, 1040–1046. [Google Scholar] [CrossRef]
- Parhizkar, N.; Shahrabi, T.; Ramezanzadeh, B. A new approach for enhancement of the corrosion protection properties and interfacial adhesion bonds between the epoxy coating and steel substrate through surface treatment by covalently modified amino functionalized graphene oxide film. Corros. Sci. 2017, 123, 55–75. [Google Scholar] [CrossRef]
- Miraftab, R.; Karimi, B.; Bahlakeh, G.; Ramezanzadeh, B. Complementary experimental and quantum mechanics approaches for exploring the mechanical characteristics of epoxy composites loaded with graphene oxide-polyaniline nanofibers. J. Ind. Eng. Chem. 2017, 53, 348–359. [Google Scholar] [CrossRef]
- Shen, B.; Zhai, W.; Tao, M.; Lu, D.; Zheng, W. Chemical functionalization of graphene oxide toward the tailoring of the interface in polymer composites. Compos. Sci. Technol. 2013, 77, 87–94. [Google Scholar] [CrossRef]
- Hu, W.; Song, L.; Wang, J.; Hu, Y.; Zhang, P. Covalent functionalization of graphene oxide with flame retardant and its effect on thermal stability and flame retardancy of epoxy composites. Int. Assoc. 2014, 11, 895–904. [Google Scholar] [CrossRef]
- Wang, X.; Li, N.; Wang, J.; Li, G.; Jian, X. Hyperbranched polyether epoxy grafted graphene oxide for benzoxazine composites: Enhancement of mechanical and thermal properties. Compos. Sci. Technol. 2018, 155, 11–21. [Google Scholar] [CrossRef]
- Li, Z.; Wang, R.; Young, R.; Deng, L.; Liu, W. Control of the functionality of graphene oxide for its application in epoxy nanocomposites. Polymer 2013, 54, 6437–6446. [Google Scholar] [CrossRef]
- Yang, J.; Chen, Z.; Feng, Q.; Fu, S. Cryogenic mechanical behaviors of carbon nanotube reinforced composites based on modified epoxy by poly (ethersulfone). Compos. B Eng. 2011, 43, 22–26. [Google Scholar] [CrossRef]
- Yousefi, N.; Lin, X.; Zheng, Q.; Shen, X.; Pothnis, J.; Jia, J. Simultaneous in situ reduction, self-alignment and covalent bonding in graphene oxide/epoxy composites. Carbon 2013, 59, 406–417. [Google Scholar] [CrossRef]
- Bian, J.; Wang, Z.; Lin, H.; Zhou, X.; Xiao, W.; Zhao, X. Thermal and mechanical properties of polypropylene nanocomposites reinforced with nano-SiO2 functionalized graphene oxide. Compos. Part A 2017, 97, 120–127. [Google Scholar] [CrossRef]
- Ma, L.; Li, N.; Wu, G.; Huang, Y. Interfacial enhancement of carbon fiber composites by growing TiO2 nanowires onto amine-based functionalized carbon fiber surface in supercritical water. Appl. Surf. Sci. 2018, 433, 560–567. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, Y. Enhanced mechanical and thermal properties of SBR composites by introducing graphene oxide nanosheets decorated with silica particles. Compos. Part A 2017, 102, 236–242. [Google Scholar] [CrossRef]
- Ma, L.; Zhu, Y.; Li, X.; Song, G. The architecture of carbon fiber-TiO2 nanorods hybrid structure in supercritical water for reinforcing interfacial and impact properties of CF/epoxy composites. Polym. Test. 2018, 66, 213–220. [Google Scholar] [CrossRef]
- Xu, T.; Jia, Z.; Luo, Y.; Jia, D.; Peng, Z. Interfacial interaction between the epoxidized natural rubber and silica in natural rubber/silica composites. Appl. Surf. Sci. 2015, 328, 306–313. [Google Scholar] [CrossRef]
- Zheng, H.; Li, Q.; Yu, C.; Zhu, X.; Ma, L. The direct architecture of carbon fiber-carbon nanofibers hierarchical reinforcements for superior interfacial properties of CF/epoxy composites. Polym. Adv. Technol. 2019, 30, 620–630. [Google Scholar] [CrossRef]
Sample | Composition (%) | |||||
---|---|---|---|---|---|---|
C | O | N | Cl | N/C | Cl/C | |
GO | 59.61 | 40.39 | — | — | — | — |
GO-OH | 61.11 | 38.89 | — | — | — | — |
GO-TCT | 48.22 | 44.90 | 2.17 | 4.71 | 0.045 | 0.098 |
GO-TCT-Tris | 56.18 | 39.89 | 3.73 | 0.25 | 0.066 | 0.004 |
Sample | Mass loss (%) (0–250 °C) | Mass loss (%) (250–500 °C) | Mass loss (%) (500–800 °C) | Residue (%) |
---|---|---|---|---|
GO | 40.9 | 6.3 | 6.3 | 46.5 |
GO-TCT | 16.3 | 20.0 | 4.3 | 59.4 |
GO-TCT-Tris | 13.1 | 19.4 | 3.3 | 64.2 |
Samples | Tensile Strength (MPa) | Elastic Modulus (GPa) | Elongation at Break (%) | Flexural Strength (MPa) | Flexural Modulus (GPa) |
---|---|---|---|---|---|
Neat epoxy (EP) | 63 ± 4 | 2.8 ± 0.1 | 2.6 ± 0.3 | 106 ± 5 | 3.0 ± 0.1 |
EP/GO (0.1%) | 80 ± 5 | 3.2 ± 0.1 | 3.3 ± 0.4 | 147 ± 3 | 3.4 ± 0.1 |
EP/GO-TCT-Tris (0.1%) | 89 ± 6 | 3.6 ± 0.2 | 4.2 ± 0.5 | 158 ± 6 | 3.5 ± 0.2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, L.; Zhu, Y.; Wu, G.; Li, X.; Tian, C.; Wang, Y.; Xu, L.; Song, G. Hydroxyl-Terminated Triazine Derivatives Grafted Graphene Oxide for Epoxy Composites: Enhancement of Interfacial and Mechanical Properties. Polymers 2019, 11, 1866. https://doi.org/10.3390/polym11111866
Ma L, Zhu Y, Wu G, Li X, Tian C, Wang Y, Xu L, Song G. Hydroxyl-Terminated Triazine Derivatives Grafted Graphene Oxide for Epoxy Composites: Enhancement of Interfacial and Mechanical Properties. Polymers. 2019; 11(11):1866. https://doi.org/10.3390/polym11111866
Chicago/Turabian StyleMa, Lichun, Yingying Zhu, Guangshun Wu, Xiaoru Li, Chongao Tian, Yuhang Wang, Longyu Xu, and Guojun Song. 2019. "Hydroxyl-Terminated Triazine Derivatives Grafted Graphene Oxide for Epoxy Composites: Enhancement of Interfacial and Mechanical Properties" Polymers 11, no. 11: 1866. https://doi.org/10.3390/polym11111866
APA StyleMa, L., Zhu, Y., Wu, G., Li, X., Tian, C., Wang, Y., Xu, L., & Song, G. (2019). Hydroxyl-Terminated Triazine Derivatives Grafted Graphene Oxide for Epoxy Composites: Enhancement of Interfacial and Mechanical Properties. Polymers, 11(11), 1866. https://doi.org/10.3390/polym11111866