Applicability of 1,6-Diphenylquinolin-2-one Derivatives as Fluorescent Sensors for Monitoring the Progress of Photopolymerisation Processes and as Photosensitisers for Bimolecular Photoinitiating Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Spectral Measurements
2.3. Steady State Photolysis
2.4. Preparation of Samples for Monitoring the Photopolymerisation Processes by FPT
2.5. Monitoring the Fluorescence Changes During Photopolymerisation by FPT Method
2.6. Monitoring the Photopolymerisation Processes by Real-Time FT-IR
2.7. Monitoring the Photopolymerisation Processes by Photo-DSC
2.8. Electrochemical Characteristic Determination of Oxidation and Reduction Potential
3. Results
3.1. Spectroscopic Properties of 1,6-Diphenylquinolin-2-one Derivatives
3.2. Applicability of 1,6-Diphenylquinolin-2-one Derivatives for On-line Progress Monitoring of Free-radical and thiol-ene Photopolymerisation Processes
3.3. Applicability of the 1,6-Diphenylquinolin-2-one for On-line Progress Monitoring of Cationic Photopolymerisation of Monomers
3.4. Comparative Analysis of the Sensitivity of Investigated Molecular Fluorescent Sensors Depending on Their Structure
3.5. Performance of 1,6-Diphenylquinolin-2-one Derivatives as Photosensitisers in Bimolecular Photoinitiating Systems for Cationic Photopolymerisation Processes of Different Types of Monomers
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Sangermano, M.; Roppolo, I.; Chiappone, A. New Horizons in Cationic Photopolymerization. Polymers 2018, 10, 136. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.F.; Silva, F.M.; Lenzi, M.K.; Pinto, J.C. Infrared (MIR, NIR), Raman, and Other Spectroscopic Methods—Chapter 6. In Monitoring Polymerization Reactions: From Fundamentals to Applications, 1st ed.; Reed, W.F., Alb, A.M., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2014; pp. 107–134. [Google Scholar]
- Sigrist, M.W. Photoacoustic Monitoring of Polymerization Processes. In Photoacoustic and Photothermal Phenomena II, 1st ed.; Murphy, J.C., Spicer, J.W.M., Aamodt, L.C., Royce, B.S.H., Eds.; Springer Series in Optical Sciences; Springer: Berlin/Heidelberg, Germany, 1990; Volume 62, pp. 288–290. [Google Scholar]
- Stansbury, J.W.; Trujillo-Lemon, M.; Lu, H.; Ding, X.Z.; Lin, Y.; Ge, J.H. Conversion-Dependent Shrinkage Stress and Strain in Dental Resins and Composites. Dent. Mater. 2005, 21, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Steeman, P.A.A.; Dias, A.A.; Wienke, D.; Zwartkuis, T. Polymerization and Network Formation of Uv-Curable Systems Monitored by Hyphenated Real-Time Dynamic Mechanical Analysis and Near-Infrared Spectroscopy. Macromolecules 2004, 37, 7001–7007. [Google Scholar] [CrossRef]
- Abu-Elenain, D.A.; Lewis, S.H.; Stansbury, J.W. Property evolution during vitrification of dimethacrylate photopolymer networks. Dent. Mater. 2013, 29, 1173–1181. [Google Scholar] [CrossRef] [Green Version]
- Frauendorfer, E.; Wolf, A.; Hergeth, W.D. Polymerization online monitoring. Chem. Eng. Technol. 2010, 33, 1767–1778. [Google Scholar] [CrossRef]
- Florenzano, F.H.; Strelitzki, R.; Reed, W.F. Absolute online monitoring of polymerization reactions. Macromolecules 1998, 31, 7226–7238. [Google Scholar] [CrossRef]
- Okamura, H.; Yamagaki, M.; Nakata, K. Analysis of Network Structures in Thiol-Ene UV Curing System Using Reworkable Resins. Polymers 2019, 11, 5. [Google Scholar] [CrossRef]
- Cho, J.D.; Hong, J.W. Photo-curing kinetics for the UV-initiated cationic polymerization of a cycloaliphatic diepoxide system photosensitized by thioxanthone. Eur. Polym. J. 2005, 41, 367–374. [Google Scholar] [CrossRef]
- Rusu, M.C.; Block, C.; van Assche, G.; van Mele, B. Influence of temperature and UV intensity on photo-polymerization reaction studied by photo-DSC. J. Therm. Anal. Calorim. 2012, 110, 287–294. [Google Scholar] [CrossRef]
- Yang, D.B. Kinetic Studies of Photopolymerization Using Real Time FT-IR Spectroscopy. J. Polym. Sci. Pol. Chem. 1993, 31, 199–208. [Google Scholar] [CrossRef]
- Kirschner, J.; Paillard, J.; Bouzrati-Zerelli, M.; Becht, J.M.; Klee, J.E.; Chelli, S.; Lakhdar, S.; Lalevée, J. Aryliodonium Ylides as Novel and Efficient Additives for Radical Chemistry: Example in Camphorquinone (CQ)/Amine Based Photoinitiating Systems. Molecules 2019, 24, 2913. [Google Scholar] [CrossRef] [PubMed]
- Scherzer, T. Real-time FTIR-ATR spectroscopy of photopolymerization reactions. Macromol. Symp. 2002, 184, 79–98. [Google Scholar] [CrossRef]
- Bosch, P.; Catalina, F.; Corrales, T.; Peinado, C. Fluorescent Probes for Sensing Processes in Polymers. Chem. Eur. J. 2005, 11, 4314–4325. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.J.; Song, J.C.; Bao, R.; Neckers, D.C. Fluorescence probes for monitoring polymerization processes. J. Polym. Sci. Pol. Phys. 1996, 34, 325–333. [Google Scholar] [CrossRef]
- Ortyl, J.; Milart, P.; Popielarz, R. Applicability of aminophthalimide probes for monitoring and acceleration of cationic photopolymerization of epoxides. Polym. Test. 2013, 32, 708–715. [Google Scholar] [CrossRef]
- Yeow, J.; Joshi, S.; Chapman, R.; Boyer, C. A Self-Reporting Photocatalyst for Online Fluorescence Monitoring of High Throughput RAFT Polymerization. Angew. Chem. Int. Edit. 2018, 57, 10102–10106. [Google Scholar] [CrossRef]
- Antonelli, C.; Serrano, B.; Baselga, J.; Cabanelas, J.C. Fluorescence probes the early formation of network at the interface of epoxy–silica nanocomposite during curing. Mater. Lett. 2014, 137, 460–463. [Google Scholar] [CrossRef]
- Kamińska, I.; Ortyl, J.; Popielarz, R. Mechanism of interaction of coumarin-based fluorescent molecular probes with polymerizing medium during free radical polymerization of a monomer. Polym. Test. 2016, 55, 310–317. [Google Scholar] [CrossRef]
- Jager, W.F.; van den Berg, O.; Picken, S.J. Novel Color-Shifting Mobility Sensitive Fluorescent Probes for Polymer Characterization. Macromol. Symp. 2005, 230, 11–19. [Google Scholar] [CrossRef]
- Ortyl, J.; Fiedor, P.; Chachaj-Brekiesz, A.; Pilch, M.; Hola, E.; Galek, M. The applicability of 2-amino-4,6-diphenyl-pyridine-3-carbonitrile sensors for monitoring different types of photopolymerization processes and acceleration of cationic and free-radical photopolymerization under near UV light. Sensors 2019, 19, 1668. [Google Scholar] [CrossRef]
- Ortyl, J.; Galica, M.; Popielarz, R.; Bogdał, D. Application of a carbazole derivative as a spectroscopic fluorescent probe for real time monitoring of cationic photopolymerization. Pol. J. Chem. Technol. 2014, 16, 75–80. [Google Scholar] [CrossRef] [Green Version]
- Fonseca, G.E.; Dube, M.A.; Penlidis, A. A Critical Overview of Sensors for Monitoring Polymerizations. Macromol. React. Eng. 2009, 3, 327–373. [Google Scholar] [CrossRef]
- Ortyl, J.; Sawicz, K.; Popielarz, R. Performance of amidocoumarins as probes for monitoring of cationic photopolymerization of monomers by fluorescence probe technology. J. Polym. Sci. Pol. Chem. 2010, 48, 4522–4528. [Google Scholar] [CrossRef]
- Ortyl, J.; Topa, M.; Kamińska-Borek, I.; Popielarz, R. Mechanism of interaction of aminocoumarins with reaction medium during cationic photopolymerization of triethylene glycol divinyl ether. Eur. Polym. J. 2019, 116, 45–55. [Google Scholar] [CrossRef]
- Topa, M.; Ortyl, J.; Chachaj-Brekiesz, A.; Kamińska-Borek, I.; Pilch, M.; Popielarz, R. Applicability of samarium(III) complexes for the role of luminescent molecular sensors for monitoring progress of photopolymerization processes and control of the thickness of polymer coatings. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 199, 430–440. [Google Scholar] [CrossRef] [PubMed]
- Ortyl, J.; Popielarz, R. The Performance of 7-Hydroxycoumarin-3-carbonitrile and 7-Hydroxycoumarin-3-carboxylic Acid as Fluorescent Probes for Monitoring of Cationic Photopolymerization Processes by FPT. J. Appl. Polym. Sci. 2013, 128, 1974–1978. [Google Scholar] [CrossRef]
- Nowak, D.; Ortyl, J.; Kamińska-Borek, I.; Kukuła, K.; Topa, M.; Popielarz, R. Photopolymerization of hybrid monomers Part I: Comparison of the performance of selected photoinitiators in cationic and free-radical polymerization of hybrid monomers. Polym. Test. 2017, 64, 313–320. [Google Scholar] [CrossRef]
- Kamińska, I.; Ortyl, J.; Popielarz, R. Applicability of quinolizino-coumarins for monitoring free radical photopolymerization by fluorescence spectroscopy. Polym. Test. 2015, 42, 99–107. [Google Scholar] [CrossRef]
- Ortyl, J.; Wilamowski, J.; Milart, P.; Galek, M.; Popielarz, R. Relative Sensitization Efficiency of Fluorescent Probes/Sensitizers for Monitoring and Acceleration of Cationic Photopolymerization of Monomers. Polym. Test. 2015, 48, 151–159. [Google Scholar] [CrossRef]
- Song, J.C.; Neckers, D.C. Characterization of Photocurable Coatings Using Fluorescence Probes. Polym. Eng. Sci. 1996, 36, 394–402. [Google Scholar] [CrossRef]
- Medel, S.; Bosch, P.; Grabchev, I.; Shah, P.K.; Liu, J.; Aguirre-Soto, A.; Stansbury, J.W. Simultaneous Measurement of Fluorescence, Conversion and Physical/mechanical Properties for Monitoring Bulk and Localized Photopolymerization Reactions in Heterogeneous Systems. RSC Adv. 2016, 6, 41275–41286. [Google Scholar] [CrossRef] [PubMed]
- Neckers, D.C.; Song, J.C.; Torres-Filho, A. Method for Determining Thickness, Degree of Cure and Other Properties of a Polymeric Coating. U.S. Patent 5717217A, 5 May 1994. [Google Scholar]
- Bajorek, A.; Trzebiatowska, K.; Jędrzejewska, B.; Pietrzak, M.; Gawinecki, R.; Pączkowski, J. Developing of Fluorescence Probes Based on Stilbazolium Salts for Monitoring Free Radical Polymerization Processes II. J. Fluoresc. 2004, 14, 295–307. [Google Scholar] [CrossRef] [PubMed]
- Lowry, T.H.; Richardson, K.S. Linear Free-Energy Relationsh—Chapter 2.2. In Mechanism and Theory in Organic Chemistry, 2nd ed.; Harper & Row Publishers: New York, NY, USA, 1981; pp. 60–70. [Google Scholar]
- Nowak, D.; Ortyl, J.; Kamińska-Borek, I.; Kukuła, K.; Topa, M.; Popielarz, R. Photopolymerization of hybrid monomers, Part II: Determination of relative quantum efficiency of selected photoinitiators in cationic and free-radical polymerization of hybrid monomers. Polym. Test. 2018, 67, 144–150. [Google Scholar] [CrossRef]
- Romańczyk, P.; Kurek, S. The Reduction Potential of Diphenyliodonium Polymerisation Photoinitiator Is Not -0.2 V vs. SCE. A Computational Study. Electrochim. Act. 2017, 255, 482–485. [Google Scholar] [CrossRef]
- Strehmel, B.; Ernst, S.; Reiner, K.; Keil, D.; Lindauer, H.; Baumann, H. Application of NIR-Photopolymers in the Graphic Industry: From Physical Chemistry to Lithographic Applications. Z. Phys. Chem. 2014, 228, 129–153. [Google Scholar] [CrossRef]
Serie | Acronym | R1 | R2 | Absorption | Emission @λex =320 nm | Δν Stoke’s Shift [cm−1] | ||
---|---|---|---|---|---|---|---|---|
λmax-ab a [nm] | ɛmax b [dm3·mol-1·cm-1] | λmax-fluo c [nm] | Imax d [rel.u.] | |||||
| Q-REF | –H | –H | 346 | 4600 | 419 | 2800 | 5035 |
Q-A1 | –OCH3 | –OCH3 | 352 | 4370 | 431 | 2400 | 5207 | |
Q-A2 | –OCH3 | –CH3 | 349 | 4350 | 424 | 1660 | 5068 | |
Q-A3 | –OCH3 | –F | 347 | 4360 | 408 | 1310 | 4309 | |
Q-A4 | –OCH3 | –CF3 | 343 | 5500 | 404 | 1200 | 4402 | |
Q-A5 | –OCH3 | –SO2CH3 | 350 | 5700 | 422 | 1860 | 4875 | |
Q-A6 | –OCH3 | –CN | 350 | 6740 | 417 | 2040 | 4591 | |
Q-B1 | –CN | –OCH3 | 352 | 3970 | 440 | 3350 | 5682 | |
Q-B2 | –CN | –CH3 | 348 | 4460 | 420 | 2020 | 4926 | |
Q-B3 | –CN | –F | 345 | 3410 | 423 | 1830 | 5345 | |
Q-B4 | –CN | –CF3 | 342 | 5330 | 414 | 460 | 5085 | |
Q-B5 | –CN | H3CO2S– | 340 | 4140 | 423 | 1830 | 5771 | |
Q-B6 | –CN | –CN | 340 | 6510 | 415 | 6690 | 5315 |
Sensor | λ max-BEFORE [nm] | Intensity @λmax-BEFORE [a.u.] | λmax-AFTER POL [nm] | Intensity @λmax-AFTER [a.u.] | |ΔImax| [a.u.] | ΔImax a [%] | Δλmax [nm] | Relative Sensitivity b |
Free-radical photopolymerisation process of TMPTA under 320 nm | ||||||||
Q-REF | 418 | 3800 | 418 | 2769 | 1031 | 27 | 0 | 0.10 |
Q-A1 | 435 | 6122 | 439 | 4631 | 1492 | 24 | -4 | 0.14 |
Q-A2 | 423 | 3605 | 428 | 2931 | 675 | 19 | -5 | 0.10 |
Q-A3 | 422 | 3384 | 424 | 2769 | 615 | 18 | -2 | 0.13 |
Q-A4 | 412 | 5117 | 376 | 10,978 | 5861 | 115 | 36 | 1.83 |
Q-A5 | 403 | 7315 | 387 | 41,684 | 34,369 | 470 | 17 | 3.17 |
Q-A6 | 399 | 45,037 | 386 | 268,699 | 223,663 | 497 | 13 | 5.66 |
Q-B1 | 442 | 6543 | 431 | 7331 | 789 | 12 | 11 | 0.86 |
Q-B2 | 426 | 4434 | 414 | 4868 | 434 | 10 | 12 | 0.55 |
Q-B3 | 423 | 3330 | 416 | 3203 | 127 | 4 | 7 | 0.40 |
Q-B4 | 401 | 10,385 | 374 | 20,060 | 9674 | 93 | 27 | 1.69 |
Q-B5 | 403 | 8962 | 384 | 37,048 | 28,086 | 313 | 19 | 3.38 |
Q-B6 | 400 | 10,747 | 386 | 63,463 | 52,716 | 490 | 14 | 4.29 |
C1-ref. | 399 | 45,037 | 386 | 268,699 | 223,663 | 497 | 13 | 1.00 |
Sensor | λmax-BEFORE [nm] | Intensity λmax-BEFORE [a.u.] | λmax-AFTER [nm] | Intensity @λmax-AFTER [a.u.] | |ΔImax| [a.u.] | ΔImax a [%] | Δλmax [nm] | Relative Sensitivity b |
Thiol-ene photopolymerisation process of TMPTA/MERCAPTO (50/50 %w/w) under 320 nm | ||||||||
Q-REF | 419 | 1858 | 421 | 1522 | 336 | 18 | −2 | 0.07 |
Q-A1 | 437 | 1741 | 431 | 1249 | 492 | 28 | 7 | 0.13 |
Q-A2 | 438 | 2015 | 430 | 1682 | 333 | 17 | 8 | 0.12 |
Q-A3 | 419 | 1812 | 421 | 1543 | 269 | 15 | −2 | 0.14 |
Q-A4 | 414 | 3696 | 386 | 9116 | 5420 | 147 | 28 | 2.65 |
Q-A5 | 402 | 1383 | 390 | 13,428 | 12,044 | 871 | 12 | 2.14 |
Q-A6 | 418 | 7190 | 389 | 95,047 | 87,857 | 1222 | 29 | 3.89 |
Q-B1 | 436 | 2718 | 425 | 5092 | 2375 | 87 | 11 | 1.25 |
Q-B2 | 424 | 2619 | 411 | 4951 | 2332 | 89 | 13 | 1.41 |
Q-B3 | 410 | 2156 | 399 | 3238 | 1082 | 50 | 11 | 0.85 |
Q-B4 | 411 | 3262 | 386 | 7366 | 4104 | 126 | 25 | 2.53 |
Q-B5 | 386 | 9456 | 375 | 53,911 | 44,456 | 470 | 11 | 2.74 |
Q-B6 | 405 | 8995 | 386 | 57,519 | 48,524 | 539 | 19 | 4.56 |
C1-ref. | 431 | 378,864 | 422 | 39,5815 | 16,951 | 4 | 8 | 1.00 |
Sensor | λmax-BEFORE [nm] | Intensity λmax-BEFORE [a.u.] | λmax-AFTER [nm] | Intensity @λmax-AFTER [a.u.] | |ΔImax| [a.u.] | ΔImax a [%] | Δλmax [nm] | Relative Sensitivity c |
Cationic photopolymerisation process of TEGDVE monomer under 320 nm | ||||||||
Q-REF | 423 | 3047 | 437 | 10,841 | 20,727 | 680 | 14 | 0.01 |
Q-A1 | 431 | 701 | 432 | 3485 | 2784 | 397 | 1 | 0.01 |
Q-A2 | 439 | 506 | 441 | 2736 | 2229 | 440 | −2 | 0.00 |
Q-A3 | 437 | 514 | 437 | 2389 | 1875 | 365 | −1 | 0.00 |
Q-A4 | 414 | 662 | 386 | 6548 | 5885 | 889 | −28 | 2.13 |
Q-A5 | 413 | 1195 | 391 | 23,632 | 22,437 | 1878 | −22 | 2.65 |
Q-A6 | 414 | 1295 | 391 | 14,775 | 13,480 | 1041 | −23 | 3.38 |
Q-B1 | 439 | 975 | 440 | 4958 | 3983 | 408 | 1 | 0.46 |
Q-B2 | 432 | 753 | 422 | 3736 | 2984 | 396 | −9 | 0.32 |
Q-B3 | 420 | 672 | 426 | 2649 | 1977 | 294 | 6 | 0.09 |
Q-B4 | 420 | 861 | 386 | 4448 | 3587 | 417 | −34 | 1.78 |
Q-B5 | 407 | 1436 | 386 | 14,149 | 12,713 | 885 | −20 | 2.88 |
Q-B6 | 403 | 2298 | 386 | 24,556 | 22,258 | 969 | −17 | 4.74 |
25ST -ref. | 448 | 132184 | 438 | 114,582 | 17,602 | 13 | −10 | 1.00 |
Fluorescent Sensor/Photosensitizer | ε @365ab-365 [dm3·mol-1·cm-1] | Eox1/2 [mV] | E00(S) [eV] | ΔGet(S) [eV] | E00 (T) [eV] | ΔGet (T) [eV] | 1 Conversion of TEGDVE @365 nm | 2 Conversion of S105 @365 nm |
---|---|---|---|---|---|---|---|---|
1,6-diphenylquinolin-2-one -reference | ||||||||
Q-REF | 2966 | 1595 | 319 | −1.07 | 2.61 | −0.31 | 62.88 | 28.43 |
SERIES A | ||||||||
Q-A1 | 3710 | 1379 | 309 | −1.18 | 2.58 | −0.50 | 86.23 | 51.22 |
Q-A2 | 3224 | 1519 | 315 | −1.10 | 2.59 | −0.23 | 90.68 | 42.21 |
Q-A3 | 2838 | 1589 | 318 | −1.07 | 2.60 | −0.39 | 0.07 | 34.86 |
Q-A4 | 2824 | 1663 | 322 | −1.04 | 2.61 | −0.64 | 20.97 | 23.11 |
Q-A5 | 3027 | 1675 | 323 | −1.04 | 2.62 | −0.24 | 73.43 | 27.91 |
Q-A6 | 3596 | 1678 | 323 | −1.03 | 2.62 | −0.25 | 86.62 | 31.26 |
SERIES B | ||||||||
Q-B1 | 3366 | 1425 | 308 | −1.12 | 2.54 | −0.41 | 67.86 | 30.22 |
Q-B2 | 3169 | 1598 | 315 | −1.03 | 2.57 | −0.27 | 40.82 | 30.34 |
Q-B3 | 2062 | 1673 | 318 | −0.98 | 2.58 | −0.21 | 1.90 | 17.28 |
Q-B4 | 2540 | 1763 | 323 | −0.95 | 2.63 | −0.16 | 40.82 | 15.62 |
Q-B5 | 1863 | 1778 | 324 | −0.94 | 2.61 | −0.13 | 20.94 | 15.16 |
Q-B6 | 2751 | 1773 | 324 | −0.95 | 2.61 | −0.13 | 74.61 | 15.09 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Topa, M.; Petko, F.; Galek, M.; Machowski, K.; Pilch, M.; Szymaszek, P.; Ortyl, J. Applicability of 1,6-Diphenylquinolin-2-one Derivatives as Fluorescent Sensors for Monitoring the Progress of Photopolymerisation Processes and as Photosensitisers for Bimolecular Photoinitiating Systems. Polymers 2019, 11, 1756. https://doi.org/10.3390/polym11111756
Topa M, Petko F, Galek M, Machowski K, Pilch M, Szymaszek P, Ortyl J. Applicability of 1,6-Diphenylquinolin-2-one Derivatives as Fluorescent Sensors for Monitoring the Progress of Photopolymerisation Processes and as Photosensitisers for Bimolecular Photoinitiating Systems. Polymers. 2019; 11(11):1756. https://doi.org/10.3390/polym11111756
Chicago/Turabian StyleTopa, Monika, Filip Petko, Mariusz Galek, Kamil Machowski, Maciej Pilch, Patryk Szymaszek, and Joanna Ortyl. 2019. "Applicability of 1,6-Diphenylquinolin-2-one Derivatives as Fluorescent Sensors for Monitoring the Progress of Photopolymerisation Processes and as Photosensitisers for Bimolecular Photoinitiating Systems" Polymers 11, no. 11: 1756. https://doi.org/10.3390/polym11111756
APA StyleTopa, M., Petko, F., Galek, M., Machowski, K., Pilch, M., Szymaszek, P., & Ortyl, J. (2019). Applicability of 1,6-Diphenylquinolin-2-one Derivatives as Fluorescent Sensors for Monitoring the Progress of Photopolymerisation Processes and as Photosensitisers for Bimolecular Photoinitiating Systems. Polymers, 11(11), 1756. https://doi.org/10.3390/polym11111756