Next Article in Journal
3D Bio-Printing of CS/Gel/HA/Gr Hybrid Osteochondral Scaffolds
Next Article in Special Issue
Cytocompatible and Antibacterial Properties of Chitosan-Siloxane Hybrid Spheres
Previous Article in Journal
Design of Ethylene-Vinyl Acetate Copolymer Fiber with Two-Way Shape Memory Effect
Previous Article in Special Issue
Influence of Nano Titanium Dioxide and Clove Oil on Chitosan–Starch Film Characteristics
Open AccessArticle

An Exochitinase with N-Acetyl-β-Glucosaminidase-Like Activity from Shrimp Head Conversion by Streptomyces speibonae and Its Application in Hydrolyzing β-Chitin Powder to Produce N-Acetyl-d-Glucosamine

1
Department of Chemical and Materials Engineering, Tamkang University, New Taipei City 25137, Taiwan
2
Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan
3
Doctoral Program in Applied Sciences, College of Science, Tamkang University, New Taipei City 25137, Taiwan
4
Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam
5
Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam
6
Life Science Development Center, Tamkang University, New Taipei City 25137, Taiwan
*
Author to whom correspondence should be addressed.
Polymers 2019, 11(10), 1600; https://doi.org/10.3390/polym11101600
Received: 4 June 2019 / Revised: 27 September 2019 / Accepted: 27 September 2019 / Published: 30 September 2019
(This article belongs to the Special Issue Chitin and Chitosan: Properties and Applications)
Marine chitinous byproducts possess significant applications in many fields. In this research, different kinds of fishery chitin-containing byproducts from shrimp (shrimp head powder (SHP) and demineralized shrimp shell powder), crab (demineralized crab shell powder), as well as squid (squid pen powder) were used to provide both carbon and nitrogen (C/N) nutrients for the production of an exochitinase via Streptomyces speibonae TKU048, a chitinolytic bacterium isolated from Taiwanese soils. S. speibonae TKU048 expressed the highest exochitinase productivity (45.668 U/mL) on 1.5% SHP-containing medium at 37 °C for 2 days. Molecular weight determination analysis basing on polyacrylamide gel electrophoresis revealed the mass of TKU048 exochitinase was approximately 21 kDa. The characterized exochitinase expressed some interesting properties, for example acidic pH optima (pH 3 and pH 5–7) and a higher temperature optimum (60 °C). Furthermore, the main hydrolysis mechanism of TKU048 exochitinase was N-acetyl-β-glucosaminidase-like activity; its most suitable substrate was β-chitin powder. The hydrolysis experiment revealed that TKU048 exochitinase was efficient in the cleavage of β-chitin powder, thereby releasing N-acetyl-d-glucosamine (GlcNAc, monomer unit of chitin structure) as the major product with 0.335 mg/mL of GlcNAc concentration and a yield of 73.64% after 96 h of incubation time. Thus, TKU048 exochitinase may have potential in GlcNAc production due to its N-acetyl-β-glucosaminidase-like activity. View Full-Text
Keywords: exochitinase; β-chitin powder; N-acetyl-β-glucosaminidase; shrimp heads; Streptomyces speibonae exochitinase; β-chitin powder; N-acetyl-β-glucosaminidase; shrimp heads; Streptomyces speibonae
Show Figures

Graphical abstract

MDPI and ACS Style

Tran, T.N.; Doan, C.T.; Nguyen, M.T.; Nguyen, V.B.; Vo, T.P.K.; Nguyen, A.D.; Wang, S.-L. An Exochitinase with N-Acetyl-β-Glucosaminidase-Like Activity from Shrimp Head Conversion by Streptomyces speibonae and Its Application in Hydrolyzing β-Chitin Powder to Produce N-Acetyl-d-Glucosamine. Polymers 2019, 11, 1600.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop