Composition of Plastic Fractions in Waste Streams: Toward More Efficient Recycling and Utilization
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Materials
3.2. Composition
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lazarevic, D.; Aoustin, E.; Buclet, N.; Brandt, N. Plastic waste management in the context of a European recycling society: Comparing results and uncertainties in a life cycle perspective. Resour. Conserv. Recycl. 2010, 55, 246–259. [Google Scholar] [CrossRef]
- PlasticsEurope. Plastics—The Facts. 2017. Available online: http://www.plasticseurope.org/application/files/5715/1717/4180/Plastics_the_facts_2017_FINAL_for_website_one_page.pdf (accessed on 20 February 2018).
- Villanueva, A.; Eder, P. End-of-Waste Criteria for Waste Plastic for Conversation; European Commission: Luxembourg, 2014. [Google Scholar]
- Cholake, S.T.; Rajarao, R.; Henderson, P.; Rajagopal, R.R.; Sahajwalla, V. Composite panels obtained from automotive waste plastics and agricultural macadamia shell waste. J. Clean. Prod. 2017, 151, 163–171. [Google Scholar] [CrossRef]
- Gharfalkar, M.; Court, R.; Campbell, C.; Ali, Z.; Hillier, G. Analysis of waste hierarchy in the European waste directive 2008/98/EC. Waste Manag. 2015, 39, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Agamuthu, P. Challenges in sustainable management of construction and demolition waste. Waste Manag. Res. 2008, 26, 491–492. [Google Scholar] [CrossRef] [PubMed]
- Ghafourian, K.; Mohamed, Z.; Ismail, S.; Malakute, R.; Abolghasemi, M. Current Status of the Research on Construction and Demolition Waste Management. Indian J. Sci. Technol. 2016, 9, 1–9. [Google Scholar] [CrossRef]
- Yuan, H. A SWOT analysis of successful construction waste management. J. Clean. Prod. 2013, 39, 1–8. [Google Scholar] [CrossRef]
- Paranhos, R.S.; Cazacliu, B.G.; Sampaio, C.H.; Petter, C.O.; Neto, R.O.; Huchet, F. A sorting method to value recycled concrete. J. Clean. Prod. 2016, 112, 2249–2258. [Google Scholar] [CrossRef]
- Plastic ZERO—Public Private Cooperations for Avoiding Plastic as a Waste Action 4.1 Market Conditions for Plastic Recycling. Available online: http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=home.showFile&rep=file&fil=PLASTIC_ZERO_action4.1_market_for_recycled_polymers_final_report.pdf (accessed on 9 June 2018).
- Directive 2008/98/EC of the European Parliament and of the Council. Available online: http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32008L0098 (accessed on 27 November 2017).
- Alam, O.; Billah, M.; Yajie, D. Characteristics of plastic bags and their potential environmental hazards. Resour. Conserv. Recycl. 2018, 132, 121–129. [Google Scholar] [CrossRef]
- Sadat-Shojai, M.; Bakhshandeh, G.-R. Recycling of PVC wastes. Polym. Degrad. Stab. 2011, 96, 404–415. [Google Scholar] [CrossRef]
- Basak, A. Environmental Pollution. In Environmental Studies; Basak, A., Ed.; Dorling Kindersley Pvt. Ltd.: Delhi, Indian, 2009; pp. 107–180. [Google Scholar]
- Ajayi, S.O.; Oyedele, L.O.; Bilal, M.; Akinade, O.O.; Alaka, H.A.; Owolabi, H.A. Critical management practices influencing on-site waste minimization in construction projects. Waste Manag. 2017, 59, 330–339. [Google Scholar] [CrossRef] [PubMed]
- European Commission—Press Release. Plastic Waste: A European Strategy to Protect the Planet, Defend Our Citizens and Empower Our Industries. Available online: http://europa.eu/rapid/press-release_IP-18-5_en.htm (accessed on 20 February 2018).
- Nasrullah, M.; Vainikka, P.; Hannula, J.; Hurme, M.; Kärki, J. Mass, energy and material balances of SRF production process. Part 2: SRF produced from construction and demolition waste. Waste Manag. 2014, 34, 2163–2170. [Google Scholar] [CrossRef] [PubMed]
- Asgari, A.; Ghorbanian, T.; Yousefi, N.; Dadashzadeh, D.; Khalili, F.; Bagheri, A.; Raei, M.; Mahvi, A.H. Quality and quantity of construction and demolition waste in Tehran. J. Environ. Health Sci. Eng. 2017, 15, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.L.; Ngadi, N.; Abdullah, T.A.T.; Inuwa, I.M. Current state and future prospects of plastic waste as source of fuel: A review. Renew. Sustain. Energy Rev. 2015, 50, 1167–1180. [Google Scholar] [CrossRef]
- Esckilsen, B. Global PVC markets: Threats and opportunities. Plast. Addit. Compd. 2008, 10, 28–30. [Google Scholar] [CrossRef]
- Van Elburg, M.; Sack, N.; Woest, A.; Peeters, K.; Spirinckx, C. LOT 32/Ecodesign of Window Products Task 2—Market Analysis. Available online: https://www.eceee.org/static/media/uploads/site-2/ecodesign/products/window-products/task2-lot32-windows-final.pdf (accessed on 25 May 2018).
- Western European Window Market: Clear Upward Trend. Available online: http://www.windowsactive.com/western-european-window-market-clear-upward-trend/ (accessed on 25 May 2018).
- Ciacci, L.; Passarini, F.; Vassura, I. The European PVC cycle: In-use stock and flows. Resour. Conserv. Recycl. 2017, 123, 108–116. [Google Scholar] [CrossRef]
- Sekito, T.; Matsuto, T.; Tanaka, N. Application of a gas-solid fluidized bed separator for shredded municipal bulky solid waste separation. Waste Manag. 2006, 26, 1422–1429. [Google Scholar] [CrossRef] [PubMed]
- Kolská, Z.; Polanský, R.; Prosr, P.; Zemanová, M.; Ryšánek, P.; Slepička, P.; Švorčik, V. Properties of polyamide nanofibers treated by UV-A radiation. Mater. Lett. 2018, 214, 264–267. [Google Scholar] [CrossRef]
- Tranter, J.B.; Refalo, P.; Rochman, A. Towards sustainable injection molding of ABS plastic products. J. Manuf. Process. 2017, 29, 399–406. [Google Scholar] [CrossRef]
- Yeh, S.-K.; Agarwal, S.; Gupta, R.K. Wood-plastic composites formulated with virgin and recycled ABS. Compos. Sci. Technol. 2009, 69, 2225–2230. [Google Scholar] [CrossRef]
- Tam, V.W.Y.; Tam, C.M. A review on the viable technology for construction waste recycling. Resour. Conserv. Recycl. 2006, 47, 209–221. [Google Scholar] [CrossRef]
- Gu, F.; Guo, J.; Zhang, W.; Summers, P.A.; Hall, P. From waste plastics to industrial raw materials: A life cycle assessment of mechanical plastic recycling practice based on a real-word case study. Sci. Total Environ. 2017, 601–602, 1192–1207. [Google Scholar] [CrossRef] [PubMed]
- Hopewell, J.; Dvorak, R.; Kosior, E. Plastics recycling: Challenges and opportunities. Philos. Trans. R. Soc. B 2009, 364, 2115–2126. [Google Scholar] [CrossRef] [PubMed]

| Stream | ABS | PA | PC | PE | PET | PMMA | PP | PS | PVC | Un 1/d 2,* |
|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 33.91 | 9.44 | 0.52 | 8.44 | 1.10 | 0.64 | 21.45 | 0.09 | 9.69 | 14.71/30.39 |
| 2 | 0.74 | - | - | 28.42 | 0.12 | - | 48.27 | 5.66 | 0.05 | 16.73/49.27 |
| 2* | 4.91 | - | - | 6.55 | 0.32 | 0.61 | 53.01 | 3.73 | 0.15 | 30.72/62.00 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lahtela, V.; Hyvärinen, M.; Kärki, T. Composition of Plastic Fractions in Waste Streams: Toward More Efficient Recycling and Utilization. Polymers 2019, 11, 69. https://doi.org/10.3390/polym11010069
Lahtela V, Hyvärinen M, Kärki T. Composition of Plastic Fractions in Waste Streams: Toward More Efficient Recycling and Utilization. Polymers. 2019; 11(1):69. https://doi.org/10.3390/polym11010069
Chicago/Turabian StyleLahtela, Ville, Marko Hyvärinen, and Timo Kärki. 2019. "Composition of Plastic Fractions in Waste Streams: Toward More Efficient Recycling and Utilization" Polymers 11, no. 1: 69. https://doi.org/10.3390/polym11010069
APA StyleLahtela, V., Hyvärinen, M., & Kärki, T. (2019). Composition of Plastic Fractions in Waste Streams: Toward More Efficient Recycling and Utilization. Polymers, 11(1), 69. https://doi.org/10.3390/polym11010069

