Next Article in Journal
Study on the Main Influencing Factors in the Removal Process of Non-Stick Fluoropolymer Coatings Using Nd:YAG Laser
Next Article in Special Issue
Orientation and Dispersion Evolution of Carbon Nanotubes in Ultra High Molecular Weight Polyethylene Composites under Extensional-Shear Coupled Flow: A Dissipative Particle Dynamics Study
Previous Article in Journal
Effect of Carbon Nanotube Addition on the Interfacial Adhesion between Graphene and Epoxy: A Molecular Dynamics Simulation
Previous Article in Special Issue
Synergetic Toughening Effect of Carbon Nanotubes and β-Nucleating Agents on the Polypropylene Random Copolymer/Styrene-Ethylene-Butylene- Styrene Block Copolymer Blends
Article Menu
Issue 1 (January) cover image

Export Article

Open AccessArticle
Polymers 2019, 11(1), 122;

The Influence of the Blend Ratio in PA6/PA66/MWCNT Blend Composites on the Electrical and Thermal Properties

Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany
Author to whom correspondence should be addressed.
Received: 19 December 2018 / Revised: 7 January 2019 / Accepted: 8 January 2019 / Published: 11 January 2019
(This article belongs to the Special Issue Polymer-CNT Nanocomposites)
PDF [4030 KB, uploaded 16 January 2019]


It is known that the percolation threshold of polyamide 6 (PA6)/multiwalled carbon nanotube (MWCNT) composites is higher than that of PA66/MWCNT composites under the same mixing conditions and melt viscosity. A series of blends of PA6 and PA66 containing 1 wt % MWCNTs have been prepared to investigate this phenomenon. At contents up to 20 wt % PA66, the blends were not electrically conductive. The electrical resistivity dropped to 109 Ohm∙cm for PA66/PA6 30/70 blends. The resistivity was 105 Ohm∙cm at higher PA66 contents. Differential scanning calorimetry was used to investigate the thermal behavior of blends. The glass transition temperature was almost constant for all blend compositions, indicating that the amorphous phases are miscible. The MWCNT addition influenced the crystallization of PA66 much more than the PA6 crystallization. A heterogeneous crystallization of the polyamide in PA66/PA6 blends took place, and the MWCNTs were mainly localized in the earlier crystallizing PA66 phase. Thus, the formation of the nanotube network and thus the electrical volume resistivity of the PA6/PA66 blends with 1 wt % MWCNTs is significantly influenced by the crystallization behavior. In PA66/PA6 blends up to 60 wt %, the more expensive PA66 can be replaced by the cheaper PA6 while retaining its electrical properties. View Full-Text
Keywords: polyamide; carbon nanotubes; melt-mixed blends; electrical properties; crystallinity polyamide; carbon nanotubes; melt-mixed blends; electrical properties; crystallinity

Graphical abstract

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Supplementary material


Share & Cite This Article

MDPI and ACS Style

Krause, B.; Kroschwald, L.; Pötschke, P. The Influence of the Blend Ratio in PA6/PA66/MWCNT Blend Composites on the Electrical and Thermal Properties. Polymers 2019, 11, 122.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Polymers EISSN 2073-4360 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top