Barrier Properties of Poly(Propylene Cyclohexanedicarboxylate) Random Eco-Friendly Copolyesters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Polymer Synthesis, Film Preparation, and Thickness Determination
2.3. Gas Transport Measurements
2.4. Relative Humidity Solution
2.5. Simulant Liquids
2.6. FTIR Spectroscopic Analysis
2.7. Color Evaluation
2.8. Molecular Weight Determination
2.9. Statistical Analysis
3. Results and Discussion
3.1. Molecular Characterization
3.2. Barrier Properties
3.2.1. Barrier Properties under the Standard Condition
3.2.2. Activation Energy of Gas Transport Process
3.2.3. Barrier Properties at Different Relative Humidity
3.2.4. Barrier after Food Simulant Contact
3.3. FTIR Characterization, Molecular Weigt Determination and Color Evaluation
3.3.1. FTIR Characterization and Molecular Weight Determination
3.3.2. Color Evaluation
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Vermeiren, L.; Devlieghere, F.; Beest, V.; Kruijf, N.D.; Debevere, J. Developments in the active food packaging of foods. Trend Food Sci. Technol. 1999, 10, 77–86. [Google Scholar] [CrossRef]
- Robertson, G.L. Chapter 4: Optical, Mechanical and Barrier Properties of Thermoplastic Polymers. In Food Packaging—Principles and Practice, 3rd ed.; Taylor & Francis Group, CRC Press: Boca Raton, FL, USA, 2013; pp. 91–130. ISBN 978-1-4398-6242-1. [Google Scholar]
- Siracusa, V.; Rocculi, P.; Romani, S.; Dalla Rosa, M. Biodegradable polymer for food packaging: A review. Trend Food Sci. Technol. 2008, 19, 634–643. [Google Scholar] [CrossRef]
- Peelman, N.; Ragaert, P.; De Meulenaer, B.; Adons, D.; Peeters, R.; Cardon, L.; Van Impe, F.; Devlieghere, F. Application of bioplastics for food packaging. Trends Food Sci. Technol. 2013, 32, 128–141. [Google Scholar] [CrossRef]
- European Bioplastics–Bioplastics, Facts and Figures 2017. Available online: http://en.european-bioplastics.org (accessed on 28 July 2017).
- Rabnawaz, M.; Wyman, I.; Auras, R.; Cheng, S. A roadmap towards green packaging: The current status and future outlook for polyesters in the packaging industry. Green Chem. 2017. [Google Scholar] [CrossRef]
- Nakajima, H.; Dijkstra, P.; Loos, K. The Recent Developments in Biobased Polymers toward General and Engineering Applications: Polymers that are Upgraded from Biodegradable Polymers, analogous to Petroleum-Derived Polymers, and New Developed. Polymers 2017, 9, 523. [Google Scholar] [CrossRef]
- Chen, G.-Q.; Patel, M.K. Plastics Derived from Biological Sources: Present and Future: A technical and Environmental Review. Chem. Rev. 2012, 112, 2082–2099. [Google Scholar] [CrossRef] [PubMed]
- Fabbri, M.; Soccio, M.; Gigli, M.; Guidotti, G.; Gamberini, R.; Gazzano, M.; Siracusa, V.; Rimini, B.; Lotti, N.; Munari, A. Design of fully aliphatic multiblock poly(ester urethane)s displaying thermoplastic elastomeric properties. Polymer 2016, 83, 154–161. [Google Scholar] [CrossRef]
- Gigli, M.; Lotti, N.; Siracusa, V.; Gazzano, M.; Munari, A.; Dalla Rosa, M. Effect of molecular architecture and chemical structure on solid-state and barrier properties of heteroatom-containing aliphatic polyesters. Eur. Polym. J. 2016, 78, 314–325. [Google Scholar] [CrossRef]
- Gigli, M.; Lotti, N.; Gazzano, M.; Siracusa, V.; Finelli, L.; Munari, A.; Dalla Rosa, M. Biodegradable aliphatic copolyesters containing PEG-like sequences for sustainable food packaging applications. Polym. Degrad. Stab. 2014, 105, 96–106. [Google Scholar] [CrossRef]
- Genovese, L.; Lotti, N.; Gazzano, M.; Finelli, L.; Munari, A. New eco-friendly random copolyesters based on poly(propylene cyclohexanedicarboxylate): Structure-properties relationships. eXPRESS Polym. Lett. 2015, 9, 972–983. [Google Scholar] [CrossRef]
- Mensitieri, G.; Di Maio, E.; Buonocore, G.G.; Nedi, I.; Oliviero, M.; Sansone, L.; Iannace, S. Processing and shelf life issues of selected food packaging materials and structures from renewable resource. Trends Food Sci. Technol. 2011, 22, 72–80. [Google Scholar] [CrossRef]
- Genovese, L.; Soccio, M.; Gigli, M.; Lotti, N.; Gazzano, M.; Siracusa, V.; Munari, A. Gas permeability, mechanical behaviour and compostability of fully-aliphatic bio-based multiblock poly(ester urethane)s. RSC Adv. 2016, 6, 55331–55342. [Google Scholar] [CrossRef]
- Brugger Feinmechanik GmbH. Gas Permeability Testing Manual; Brugger Feinmechanik GmbH: Munchen, Germany, 2008. [Google Scholar]
- NIST-National Instition of Standards and Technology. Guide for the Use of the International System of Units (SI); Special Publication 811; Thompson, A., Taylor, B.N., Eds.; U.S. Department of Commerce: Washington, DC, USA, 2008.
- Siracusa, V. Food packaging permeability behaviour: A report. Int. J. Polym. Sci. 2012, 1, 1–11. [Google Scholar] [CrossRef]
- Siracusa, V.; Dalla Rosa, M.; Iordanskii, A. Performance of poly(lactic acid) surface modified films for food packaging application. Materials 2017, 10, 850. [Google Scholar] [CrossRef] [PubMed]
- Burgess, S.K.; Kriegel, R.M.; Koros, W.J. Carbon Dioxide Sorption in Amorphous Poly(ethylene furanoate). Macromolecules 2015, 48, 2184–2193. [Google Scholar] [CrossRef]
- European Union (EU). Regulation No. 10/2011 on Plastic Materials and Articles Intended to Come into Contact with Food. Available online: http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32011R0010 (accessed on 4 February 2011).
- Glicerina, V.; Balestra, F.; Dalla Rosa, M.; Bergenhstal, B.; Tornberg, E.; Romani, S. The Influence of Different Processing Stages on particle size, microstructure and appearance of dark chocolate. J. Food Sci. 2014, 79, E1359–E1365. [Google Scholar] [CrossRef] [PubMed]
- Galus, S.; Lenart, A. Development and characterization of composite edible films based on sodium alginate and pectin. J. Food Eng. 2013, 115, 459–465. [Google Scholar] [CrossRef]
- Syahidad, K.; Rosnah, S.; Noranizan, M.A.; Zaulia, O.; Anvarjon, A. Quality change of fresh cut cantaloupe (Cucumis melo L. var Reticulatus cv. Glamour) in different types of polypropylene packaging. Int. J. Res. 2015, 22, 753–760. [Google Scholar]
- Soccio, M.; Lotti, N.; Finelli, L.; Gazzano, M.; Munari, A. Neopenthyl glycol containing poly(propylene azelate)s: Synthesis and thermal properties. Eur. Polym. J. 2007, 43, 3301–3313. [Google Scholar] [CrossRef]
- Soccio, M.; Lotti, N.; Finelli, L.; Gazzano, M.; Munari, A. Neopenthyl glycol containing poly(propylene terephthalate)s: Structure-properties relationships. J. Polym. Sci. Part B Polym. Phys. 2008, 46, 170–181. [Google Scholar] [CrossRef]
- Genovese, L.; Lotti, N.; Siracusa, V.; Munari, A. Poly(Neopentyl Glycol Furanoate): A Member of the Furan-Based Polyester Family with Smart Barrier Performances for Sustainable Food Packaging Applications. Materials 2017, 10, 1028. [Google Scholar] [CrossRef] [PubMed]
- Genovese, L.; Lotti, N.; Gazzano, M.; Siracusa, V.; Dalla Rosa, M.; Munari, A. Novel biodegradable aliphatic copolyesters based on poly(butylene succinate) containing thioether-linkages for sustainable food packaging applications. Polym. Degrad. Stab. 2016, 132, 191–201. [Google Scholar] [CrossRef]
- Guidotti, G.; Soccio, M.; Siracusa, V.; Gazzano, M.; Salatelli, E.; Munari, A.; Lotti, N. Novel Random PBS-Based Copolymers Containing Aliphatic Side Chains for Sustainable Flexible Food Packaging. Polymers 2017, 9, 724. [Google Scholar] [CrossRef]
- Farber, J.M. Microbiological aspects of modified—Atmosphere packaging technology—A review. J. Food Prot. 1991, 54, 58–70. [Google Scholar] [CrossRef]
- Alavi, S.; Thomas, S.; Sandeep, K.P.; Kalarikkal, N.; Varghese, J.; Yaragalla, S. Polymer for Packaging Application; CRC Press: Boca Raton, FL, USA, 2014; Volume 2, pp. 39–52. [Google Scholar]
- Genovese, L.; Gigli, M.; Lotti, N.; Gazzano, M.; Siracusa, V.; Munari, A.; Dalla Rosa, M. Biodegradable Long Chain Aliphatic Polyesters Containing Ether-Linkages: Synthesis, Solid-State, and Barrier Properties. Ind. Eng. Chem. Res. 2014, 53, 10965–10973. [Google Scholar] [CrossRef]
- Genovese, L.; Soccio, M.; Lotti, N.; Gazzano, M.; Siracusa, V.; Salatelli, E.; Balestra, F.; Munari, A. Design of biobased PLLA triblock copolymers for sustainable food packaging: Thermo-mechanical properties, gas barrier ability and compostability. Eur. Polym. J. 2017, 95, 289–303. [Google Scholar] [CrossRef]
- Shmid, M.; Zillinger, W.; Muller, K.; Sangerlaub, S. Permeation of water vapour, nitrogen, oxygen and carbon dioxide through whey protein isolated based films and coatings—Permselectivity and activation energy. Food Packag. Shelf Life 2015, 6, 21–29. [Google Scholar] [CrossRef]
- Siracusa, V.; Ingrao, C. Correlation amongst gas barrier behavior, temperature and thickness in BOPP films for food packaging usage: A lab-scale testing experience. Polym. Test. 2017, 59, 277–289. [Google Scholar] [CrossRef]
- Burgess, S.K.; Karvan, O.; Johnson, J.R.; Kriegel, R.M.; Koros, W.J. Oxygen sorption and transport in amorphous poly(ethylene furanoate). Polymer 2014, 55, 4748–4756. [Google Scholar] [CrossRef]
- Atkins, P.; Jones, L. Chemical Principles: The Quest for Insight, 5th ed.; Freeman WH & Co.: New York, NY, USA, 2012. [Google Scholar]
- Auras, R.A.; Harte, B.; Selke, S.; Hernandez, R. Mechanical, Physical and Barrier Properties of Poly(lactide) Films. J. Plast. Film Sheeting 2003, 19, 123–135. [Google Scholar] [CrossRef]
- Kim, S.W.; Choi, H.M. Morphology, thermal, mechanical and barrier properties of grapheme oxide/poly(lactic acid) nanocomposite films. Korean J. Chem. Eng. 2016, 33, 330–336. [Google Scholar] [CrossRef]
- Galić, K.; Ciković, N. Permeability characterization of solvent treated polymer materials. Polym. Test. 2001, 20, 599–606. [Google Scholar] [CrossRef]
- Abenojar, J.; Pantoja, M.; Matìnez, M.A.; Del Real, J.C. Aging by mixture and/or temperature of epoxy/SiC composites: Thermal and mechanical properties. J. Comp. Mater. 2015, 49, 2963–2975. [Google Scholar] [CrossRef]
- Meisrr, A.; Willstrand, K.; Possart, W. Influence of composition, humidity and temperature on chemical aging in epoxies: A local study of the interphase with air. J. Adhes. 2010, 86, 222–243. [Google Scholar] [CrossRef]
- Lawton, J.W.; Doane, W.M.; Willett, J.L. Aging and moisture effects on the tensile properties of Starch/Poly(hydroxyester ether) composites. J. Appl. Polym. Sci. 2006, 100, 3332–3339. [Google Scholar] [CrossRef]
- Siracusa, V.; Lotti, N.; Munari, A.; Dalla Rosa, M. Poly(butylene succinate) and poly(butylene-succinate-co-adipate) for food packaging application: Gas barrier properties after stressed treatments. Polym. Degrad. Stab. 2015, 119, 35–45. [Google Scholar] [CrossRef]
- Guidotti, G.; Gigli, M.; Soccio, M.; Lotti, N.; Gazzano, M.; Siracusa, V.; Munari, A. Poly(butylene 2,5-thiophenedicarboxylate): An Added Value to the Class of High Gas Barrier Biopolyesters. Polymer 2018, 9, 167. [Google Scholar] [CrossRef]
- McGuire, R.G. Reporting of objective color measurements. HortScience 1992, 27, 1254–1255. [Google Scholar]
Polymer | Mna | Dindexb | NCE c (mol %) | Thickness (μm) | Tmd (°C) | Tge (°C) | Χc d (%) |
---|---|---|---|---|---|---|---|
PPCE | 36,398 | 2.2 | 0 | 246 ± 22 | 148 | 9 | 29 ± 4 |
P(PCE95NCE5) | 29,549 | 2.9 | 5 | 292 ± 31 | 142 | 11 | 26 ± 3 |
P(PCE90NCE10) | 31,124 | 2.2 | 10 | 268 ± 18 | 135 | 12 | 25 ± 2 |
P(PCE85NCE15) | 27,522 | 2.6 | 15 | 238 ± 33 | 125 | 13 | 25 ± 2 |
P(PCE80NCE20) | 25,386 | 2.4 | 20 | 308 ± 10 | 119 | 13 | 24 ± 2 |
Sample | GTR (cm3·cm/m2·d·atm) | S (cm3/cm2·atm) | D (cm3/s) | tL (s) | CO2/O2 | CO2/N2 | O2/N2 |
---|---|---|---|---|---|---|---|
PPCE | 11.04 | 3.02 ± 4.04·E-02 | 4.18·E-09 ± 0.16·E-11 | 8513 ± 86 | 1.73 | 3.53 | 2.04 |
P(PCE95NCE5) | 34.35 | 8.44·E-01 ± 4.04·E-03 | 4.64·E-08 ± 1.15·E-10 | 4623 ± 15 | 3.80 | 8.26 | 2.17 |
P(PCE90NCE10) | 29.36 | 1.69 ± 1.0·E-02 | 1.98·E-08 ± 1.15·E-10 | 3464 ± 18 | 4.41 | 6.88 | 1.56 |
P(PCE85NCE15) | 31.25 | 7.48·E-01 ± 1.60·E-02 | 4.77·E-08 ± 1.05·E-09 | 3312 ± 73 | 3.58 | 7.59 | 2.12 |
P(PCE80NCE20) | 27.47 | 1.22 ± 3.51·E-02 | 2.57·E-08 ± 6.51·E-10 | 6043 ± 145 | 3.70 | 7.78 | 2.10 |
Sample | PPCE | P(PCE95NCE5) | P(PCE90NCE10) | P(PCE85NCE15) | P(PCE80NCE20) |
---|---|---|---|---|---|
EGTR (KJ/mol) | 30.7 ± 0.13 (0.97) | 26.8 ± 0.18 (0.97) | 28.9 ± 0.11 (0.97) | 30.1 ± 0.14 (0.99) | 32.5 ± 0.21 (0.97) |
HS (KJ/mol) | - | −15.4 ± 0.11 (0.60) | −35.8 ± 0.16 (0.18) | 5.7 ± 0.11 (0.02) | −7.24 ± 0.12 (0.01) |
ED (KJ/mol) | - | 553 ± 0.18 (0.88) | 8.32 ± 0.12 (0.00) | 95.1 ± 0.15 (0.97) | 388 ± 0.11 (0.15) |
Sample | CO2 | |||
---|---|---|---|---|
23 °C 85% RH (KCl) | 38 °C 90% RH (KNO3) | 23 °C 85% RH (KCl) | 38 °C 90% RH (KNO3) | |
PPCE | −22% | +136% | +7% | +54% |
P(PCE95NCE5) | +126% | +23% | +11% | +62% |
P(PCE90NCE10) | +85% | +197% | +5% | +47% |
P(PCE85NCE15) | +55% | +159% | +8% | +35% |
P(PCE80NCE20) | +53% | +121% | -22% | +60% |
Sample/Simulant | Simulant A | Simulant B | Simulant C | Simulant D1 |
---|---|---|---|---|
CO2/O2 | ||||
PPCE | +8%/−21% | +24%/−18% | +25%/−17% | +37%/−28% |
P(PCE95NCE5) | −70%/−20% | −64%/−17% | −50%/−10% | −34%/+4% |
P(PCE90NCE10) | −36%/−3% | −47%/+11% | −36%/−5% | −36%/−1% |
P(PCE85NCE15) | −49%/−25% | −49%/−24% | −37%/−17% | −34%/−8% |
P(PCE80NCE20) | −31%/−10% | −15%/+6% | −3%/+11% | −20%/−13% |
Chemical Group | Peak Position (cm−1) |
---|---|
–OH stretch (free) | 3578 |
CH-stretch (of CH2) | 2916 (νas CH2), 2853 (νs CH2) |
–CH3 (pendant group) | 2871 (νs) |
–C=O normal carbonyl stretch | 1712 |
–CH-deformation symmetric and asymmetric bending | 1472 (δs CH2) |
C–O–H in-plane bend | 1424 |
–CH3 | 1451 (δas), 1378 (δs) |
–CH2-scissoring | 1438 |
–C=O bending | 1245 |
–C–O stretching | 1178, 1153 |
–OH bending | 1046 |
–CH2 wagging and twisting | 1243, 1180 |
–CH2 rocking | 731 |
O–H out-of-plane | 992 (as), 945(s) |
C–C stretch | 920, 809 |
Sample | L* | a* | b* | ΔE | C* | hab |
---|---|---|---|---|---|---|
White standard | 66.47 ± 0.01 | −0.73 ± 0.01 | 1.22 ± 0 | - | 1.42 | 121 |
PPCE | 63.67 ± 0.14 | −0.89 ± 0.03 | 1.78 ± 0.13 | 2.85 | 1.99 | 139 |
P(PCE95NCE5) | 61.86 ± 0.69 | −0.88 ± 0.02 | 2.93 ± 0.52 | 4.92 | 3.06 | 107 |
P(PCE90NCE10) | 63.49 ± 0.60 | −0.87 ± 0.02 | 1.85 ± 0.28 | 3.05 | 2.04 | 115 |
P(PCE85NCE15) | 62.92 ± 0.32 | −0.95 ± 0.05 | 2.52 ± 0.27 | 3.79 | 2.69 | 111 |
P(PCE80NCE20) | 61.96 ± 0.43 | −0.98 ± 0.02 | 2.88 ± 0.24 | 4.81 | 3.04 | 109 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siracusa, V.; Genovese, L.; Ingrao, C.; Munari, A.; Lotti, N. Barrier Properties of Poly(Propylene Cyclohexanedicarboxylate) Random Eco-Friendly Copolyesters. Polymers 2018, 10, 502. https://doi.org/10.3390/polym10050502
Siracusa V, Genovese L, Ingrao C, Munari A, Lotti N. Barrier Properties of Poly(Propylene Cyclohexanedicarboxylate) Random Eco-Friendly Copolyesters. Polymers. 2018; 10(5):502. https://doi.org/10.3390/polym10050502
Chicago/Turabian StyleSiracusa, Valentina, Laura Genovese, Carlo Ingrao, Andrea Munari, and Nadia Lotti. 2018. "Barrier Properties of Poly(Propylene Cyclohexanedicarboxylate) Random Eco-Friendly Copolyesters" Polymers 10, no. 5: 502. https://doi.org/10.3390/polym10050502
APA StyleSiracusa, V., Genovese, L., Ingrao, C., Munari, A., & Lotti, N. (2018). Barrier Properties of Poly(Propylene Cyclohexanedicarboxylate) Random Eco-Friendly Copolyesters. Polymers, 10(5), 502. https://doi.org/10.3390/polym10050502