PPESK-Modified Multi-Functional Epoxy Resin and Its Application to the Pultrusion of Carbon Fiber
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Samples
2.3. Characterization
3. Results
3.1. Curing Behavior and Viscosity of E/PPESK Resin Blends
3.2. Mechanical Properties of E/PPESK Resin Blends
3.3. Physical Properties of CF/E/PPESK Epoxy Resin Composites
3.4. Mechanical Properties of CF/E/PPESK Epoxy Resin Composites
3.5. Fatigue and Aging Properties of CF/E/PPESK Composites
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Park, S.Y.; Choi, W.J.; Choi, C.H.; Choi, H.S. The effect of curing temperature on thermal, physical and mechanical characteristics of two types of adhesives for aerospace structures. J. Adhes. Sci. Technol. 2018, 32, 1200–1223. [Google Scholar] [CrossRef]
- Xu, Y.J.; Liao, G.X.; Gu, T.S.; Zheng, L.; Jian, X.G. Mechanical and morphological properties of epoxy resins modified by poly(phthalazinone ether sulfone ketone). J. Appl. Polym. Sci. 2008, 110, 2253–2260. [Google Scholar] [CrossRef]
- Auvergne, R.; Caillol, S.; David, G.; Boutevin, B.; Pascault, J.P. Biobased thermosetting epoxy: Present and future. Chem. Rev. 2014, 114, 1082–1115. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Krishnan, S.; Samal, S.K.; Mohanty, S.; Nayak, S.K. Toughening of petroleum based (DGEBA) epoxy resins with various renewable resources based flexible chains for high performance application: A review. Ind. Eng. Chem. Res. 2018, 57, 2711–2726. [Google Scholar] [CrossRef]
- Thunga, M.; Akinc, M.; Kessler, M.R. Tailoring the toughness and CTE of high temperature bisphenol E cyanate ester (BECy) resin. Express Polym. Lett. 2014, 8, 336–344. [Google Scholar] [CrossRef]
- Marouf, B.T.; Mai, Y.W.; Bagheri, R.; Pearson, R.A. Toughening of epoxy nanocomposites: Nano and hybrid effects. Polym. Rev. 2016, 56, 70–112. [Google Scholar] [CrossRef]
- Wu, S.Y.; Guo, Q.P.; Kraska, M.; Stuhn, B.; Mai, Y.W. Toughening epoxy thermosets with block ionomers: The role of phase domain size. Macromolecules. 2013, 46, 8190–8202. [Google Scholar] [CrossRef]
- Fernandez, B.; Arbelaiz, A.; Diaz, E.; Mondragon, I. Influence of polyethersulfone modification of a tetrafunctional epoxy matrix on the fracture behavior of composite laminates based on woven carbon fibers. Polym. Compos. 2004, 25, 480–488. [Google Scholar] [CrossRef]
- Chen, C.H.; Chen, P.H. Hybrid fibre reinforced epoxy composites for pultrusion: Mechanical and thermal properties. Polym. Polym. Compos. 2011, 19, 459–468. [Google Scholar] [CrossRef]
- Li, G.; Huang, Z.B.; Li, P.; Xin, C.L.; Jia, X.L.; Wang, B.H.; He, Y.D.; Ryu, S.; Yang, X.P. Curing kinetics and mechanism of polysulfone nanofibrous membranes toughened epoxy/amine systems using isothermal DSC and NIR. Thermochim. Acta 2010, 497, 27–34. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, Q.P.; Fox, B.L. Study on thermoplastic-modified multifunctional epoxies: Influence of heating rate on cure behavior and phase separation. Compos. Sci. Technol. 2009, 68, 1172–1179. [Google Scholar] [CrossRef]
- Giannotti, M.I.; Bernal, C.R.; Oyanguren, P.A.; Galante, M.J. Morphology and fracture properties relationship of epoxy-diamine systems simultaneously modified with polysulfone and poly(ether imide). Polym. Eng. Sci. 2005, 45, 1312–1318. [Google Scholar] [CrossRef]
- Hourston, D.J.; Lane, J.M.; Zhang, H.X. Toughening of epoxy resins with thermoplastics: 3. An investigation into the effects of composition on the properties of epoxy resin blends. Polym. Int. 1997, 42, 349–355. [Google Scholar] [CrossRef]
- Chen, H.M.; Lv, R.G.; Liu, P.; Wang, H.Y.; Huang, Z.Y.; Huang, T.; Li, T.S. An investigation of cure and thermal stability of poly(amide-amidic acid) modified tetraglycidyl 4,4′-diaminodiphenylmethane/4,4′-diaminodiphenylsulfone. J. Appl. Polym. Sci. 2013, 128, 1592–1600. [Google Scholar] [CrossRef]
- Zhong, Z.K.; Zheng, S.X.; Huang, J.Y.; Cheng, X.G.; Guo, Q.P.; Wei, J. Phase behavior and mechanical properties of epoxy resin containing phenolphthalein poly(ether ether ketone). Polymer 1998, 39, 1075–1080. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, M.; Dang, G.D.; Li, Y.; An, X.F.; Chen, C.H.; Yi, X.S. Toughening of epoxy resin by poly(ether ether ketone) with pendant fluorocarbon groups. J. Appl. Polym. Sci. 2011, 122, 1758–1765. [Google Scholar] [CrossRef]
- Banea, M.D.; da Silva, L.F.M.; Campilho, R.D.S.G. Effect of temperature on the shear strength of aluminium single lap bonded joints for high temperature applications. J. Adhes. Sci. Technol. 2012, 28, 1367–1381. [Google Scholar] [CrossRef]
- Liu, R.; Wang, J.Y.; Li, J.L.; Jian, X.G. An investigation of epoxy/thermoplastic blends based on addition of a novel coply(aryl ether nitrile) containing phthalazinone and biphenyl moieties. Polym. Int. 2015, 64, 1786–1793. [Google Scholar] [CrossRef]
- Xu, Y.J.; Fu, X.J.; Liao, G.X.; Zhou, H.X.; Jian, X.G. Preparation, morphology and thermo-mechanical properties of epoxy resins modified by co-poly(phthalazinone ether sulfone). High Perform. Polym. 2011, 23, 248–254. [Google Scholar] [CrossRef]
- Liu, R.; Wang, J.Y.; He, Q.Z.; Zong, L.S.; Jian, X.G. Interaction and properties of epoxy-amine system modified with poly(phthalazinone ether nitrile ketone). J. Appl. Polym. Sci. 2016, 133, 42938. [Google Scholar] [CrossRef]
- Wang, L.W.; Wang, J.W.; Qi, Y.; Zhang, F.F.; Weng, Z.H.; Jian, X.G. Preparation of novel epoxy resin bearing phthalazinone moiety and their application as high-temperature adhesives. Polymers 2018, 10, 708. [Google Scholar] [CrossRef]
- Wang, J.Y.; Wang, M.J.; Liu, C.; Zhou, H.X.; Jian, X.G. Synthesis of poly(arylene ether nitrile ketone)s bearing phthalazinone moiety and their properties. Polym. Bull. 2013, 70, 1467–1481. [Google Scholar] [CrossRef]
- Song, Y.; Wang, J.Y.; Li, G.H.; Sun, Q.M.; Jian, X.G.; Teng, J.; Zhang, H.B. Synthesis, characterization and optical properties of cross-linkable poly(phthalazinone ether ketone sulfone). Polymer 2008, 49, 724–731. [Google Scholar] [CrossRef]
Phase 1 (°C) | Phase 2 (°C) | Phase 3 (°C) | Mold Length (m) | Pultrusion Rate (m/min) | Resin Content (%) |
---|---|---|---|---|---|
170 | 180 | 195 | 0.9–1.2 | 0.4–0.6 | 20–24 |
Samples | Glass Transition Temperature (°C) | Initial Decomposition Temperature (°C) | Maximum Weight Loss Temperature (°C) |
---|---|---|---|
E/PPESK-0 | 225 | 385 | 420 |
E/PPESK-2 | 226 | 386 | 421 |
E/PPESK-4 | 230 | 387 | 425 |
E/PPESK-6 | 232 | 385 | 417 |
E/PPESK-8 | 235 | 386 | 421 |
Properties | CF/E | CF/E/PPESK-6 |
---|---|---|
Tensile strength (MPa) | 2300 ± 142 | 2200 ± 153 |
Linear expansion coefficient | ≤2.0 × 10−6 | ≤2.0 × 10−6 |
Interlaminar shear strength (MPa) | 82.7 ± 4.8 | 81.6 ± 4.2 |
30 KN radial pressure resistance | No cracking or peeling | No cracking or peeling |
Bending performance, 55D (D: bar diameter) | No cracking or peeling on the surface below 55D | No cracking or peeling on the surface at 55 D |
High temperature tensile strength | Tensile strength at 190 °C ≥ the value of 90% at room temperature | Tensile strength at 190 °C ≥ the value of 90% at room temperature |
Cycles | Pull Force (kN) | Downward Force (kN) | Upward Displacement (mm) | Downward Displacement (mm) |
---|---|---|---|---|
3183 | 70.034 | −9.961 | 0.942 | 0.134 |
6410 | 70.025 | −10.044 | 0.96 | 0.131 |
142,036 | 70.025 | −10.044 | 0.96 | 0.131 |
513,257 | 69.425 | −10.044 | 0.98 | 0.132 |
784,601 | 69.925 | −9.844 | 0.94 | 0.139 |
1,025,732 | 70.0855 | −10.144 | 0.97 | 0.142 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Wang, J.; Zhang, F.; Qi, Y.; Weng, Z.; Jian, X. PPESK-Modified Multi-Functional Epoxy Resin and Its Application to the Pultrusion of Carbon Fiber. Polymers 2018, 10, 1067. https://doi.org/10.3390/polym10101067
Wang L, Wang J, Zhang F, Qi Y, Weng Z, Jian X. PPESK-Modified Multi-Functional Epoxy Resin and Its Application to the Pultrusion of Carbon Fiber. Polymers. 2018; 10(10):1067. https://doi.org/10.3390/polym10101067
Chicago/Turabian StyleWang, Liwei, Jinyan Wang, Fengfeng Zhang, Yu Qi, Zhihuan Weng, and Xigao Jian. 2018. "PPESK-Modified Multi-Functional Epoxy Resin and Its Application to the Pultrusion of Carbon Fiber" Polymers 10, no. 10: 1067. https://doi.org/10.3390/polym10101067
APA StyleWang, L., Wang, J., Zhang, F., Qi, Y., Weng, Z., & Jian, X. (2018). PPESK-Modified Multi-Functional Epoxy Resin and Its Application to the Pultrusion of Carbon Fiber. Polymers, 10(10), 1067. https://doi.org/10.3390/polym10101067