Fast Ferroelectric Liquid Crystal Based Optical Switch: Simulation and Experiments
Abstract
:1. Introduction
2. Experiments
Cell Thickness Optimization
3. Optical Switching in FLC Modulator
3.1. Principle of Operation
Binary Switch
3.2. Simulation of Switch Performance Parameters
4. Results and Discussions
Electro-Optic Measurements
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fujiwara, M.; Goodman, M.; O’Mahony, M.; Tonguz, O.; Willner, A. Guest Editorial Multiwavelength Optical Technology and Networks. J. Light. Technol. 1996, 14, 932. [Google Scholar] [CrossRef]
- Cruz, R.L.; Hill, G.R.; Kellner, A.L.; Ramaswamy, R.; Sasaki, G.H.; Yamabayashi, Y. Guest Editorial Optical Networks. IEEE J. Select. Areas Commun. 1996, 14, 761. [Google Scholar] [CrossRef] [Green Version]
- Ollier, E. Optical MEMS devices based on moving waveguides. IEEE J. Sel. Top. Quantum Electron. 2002, 8, 155. [Google Scholar] [CrossRef]
- Wang, X.; Howley, B.; Chen, M.; Chen, R. 4×4 Nonblocking Polymeric Thermo-Optic Switch Matrix Using the Total Internal Reflection Effect. IEEE J. Sel. Top. Quantum Electron. 2006, 12, 997. [Google Scholar] [CrossRef]
- Ho, K.P.; Liaw, S.K. Demultiplexer Crosstalk Rejection Requirements for Hybrid WDM System with Analog and Digital Channels. IEEE Photon. Technol. Lett. 1998, 10, 737. [Google Scholar] [CrossRef]
- Wang, H.; Li, X.; Zhang, M.; Chen, K. Broadband 2×2 lithium niobate electro-optic switch based on a Mach–Zehnder interferometer with counter-tapered directional couplers. Appl. Opt. 2017, 56, 8164. [Google Scholar] [CrossRef]
- Stephens, M.F.C.; Asghari, M.; Penty, R.V.; White, I.H. Demonstration of ultrafast all-optical wavelength conversion utilizing birefringence in semiconductor optical amplifiers. IEEE Photon. Technol. Lett. 1997, 9, 449. [Google Scholar] [CrossRef]
- Banchi, L.; Presi, M.; D’Errico, A.; Contestabile, G.; Ciaramella, E. All-optical 10 and 40 Gbit/s RZ-to-NRZ format and wavelength conversion using semiconductor optical amplifiers. J. Lightwave Technol. 2010, 28, 32. [Google Scholar] [CrossRef]
- Nolting, H.P.; Gravert, M.; Bachmann, M.; Renaud, M. Crosstalk Reduced Digital Optical Switch with Single Electrode Designed for InP. Opt. Amplif. Appl. 1996, 6, 637. [Google Scholar]
- Shigeto, K.; Seiiti, S.; Yoshie, T.; Noriyoshi, Y. Ferroelectric liquid crystal driving method for optical switching devices in communication networks. Ferroelectrics 1993, 149, 159. [Google Scholar]
- Panarin, Y.; Sreenilayam, S. FLC based matrix optical switch. In Proceedings of the International Conference on Photonics in Switching, Pisa, Italy, 15–19 September 2009. [Google Scholar]
- Schadt, M.; Seiberle, H.; Schuster, A. Optical patterning of multi-domain liquid-crystal displays with wide viewing angles. Nature 1996, 381, 212. [Google Scholar] [CrossRef]
- Saito, I.; Ono, H.; Kawatsuki, N. Photorefractive Bragg diffraction in high- and low-molar-mass liquid crystal mixtures. Appl. Phys. Lett. 1998, 72, 1942. [Google Scholar]
- Sreenilayam, S.P.; Panarin, Y.P.; Vij, J.K.; Lehmann, A.; Poppe, M.; Tschierske, C. Development of ferroelectricity in the smectic phases of 4-cyanoresorcinol derived achiral bent-core liquid crystals with long terminal alkyl chains. Phys. Rev. Mater. 2017, 1, 035604. [Google Scholar] [CrossRef]
- Sreenilayam, S.P.; Panarin, Y.P.; Vij, J.K.; Panov, V.P.; Lehmann, A.; Poppe, M.; Prehm, M.; Tschierske, C. Spontaneous helix formation in non-chiral bent-core liquid crystals with fast linear electro-optic effect. Nat. Commun. 2016, 7, 11369. [Google Scholar] [CrossRef] [Green Version]
- Panarin, Y.P.; Sreenilayam, S.P.; Vij, J.K.; Lehmann, A.; Tschierske, C. A fast linear electro-optical effect in a non-chiral bent-core liquid crystal. J. Mater. Chem. C 2017, 5, 12585. [Google Scholar] [CrossRef]
- Vij, J.K.; Panarin, Y.P.; Sreenilayam, S.P.; Alaasar, M.; Tschierske, C. Investigation of the heliconical smectic SmCSPFhel phase in achiral bent-core mesogens derived from 4-cyanoresorcinol. Phys. Rev. Mater. 2019, 3, 045603. [Google Scholar] [CrossRef]
- Srivastava, A.; Hu, W.; Chigrinov, V.; Kiselev, A.; Lu, Y.Q. Fast switchable grating based on orthogonal photo alignments of ferroelectric liquid crystals. Appl. Phys. Lett. 2012, 101, 031112. [Google Scholar] [CrossRef]
- Chigrinov, V.; Manohar, R.; Srivastava, A.; Pozhidaev, E.P. Single walled carbon nano-tube, ferroelectric liquid crystal composites: Excellent diffractive tool. Appl. Phys. Lett. 2011, 99, 201106. [Google Scholar] [Green Version]
- Sreenilayam, S.P.; Agra-Kooijman, D.M.; Panov, V.P.; Swaminathan, V.; Vij, J.K.; Panarin, Y.P.; Kocot, A.; Panov, A.; Rodriguez-Lojo, D.; Stevenson, P.J. Phase behavior and characterization of heptamethyltrisiloxane-based de Vries smectic liquid crystal by electro-optics, x rays, and dielectric spectroscopy. Phys. Rev. E 2017, 95, 032701. [Google Scholar] [CrossRef] [Green Version]
- Larsen, T.T.; Bjarklev, A.; Sparre, D.H.; Broeng, J. Optical devices based on liquid crystal photonic bandgap fibres. Optics Express 2003, 11, 2589. [Google Scholar] [CrossRef]
- Soref, R.A.; McMahon, D.H. Calcite 2×2 optical bypass switch controlled by liquid-crystal cells. Opt. Lett. 1982, 7, 186. [Google Scholar] [CrossRef]
- Fuji, Y. Low-Crosstalk 1×2 Optical Switch Composed of Twisted Nematic Liquid Crystal Cells. IEEE. Photon. Lett. 1993, 5, 206. [Google Scholar] [CrossRef]
- Pozhidaev, E.P.; Chigrinov, V.G.; Du, T. Fast Switching Bistable Ferroelectric Liquid Crystal Switches as a New Optical Elements for Photonics Applications. In Proceedings of the 14th OptoElectronics and Communications Conference, Vienna, Austria, 13–17 July 2009. [Google Scholar] [CrossRef]
- Chigrinov, V.G. Liquid Crystal Applications in Photonics. In Proceedings of the Photonics West Conference, San Jose, CA, USA, 25–28 January 2009. [Google Scholar]
- Soref, R.A. Low-cross-talk 2×2 optical switch. Opt. Lett. 1981, 6, 275. [Google Scholar] [CrossRef]
- Shankar, N.; Morris, J.; Yakymyshyn, C.; Pollock, C. A 2×2 fiber optic switch using chiral liquid crystals. IEEE Photon. Technol. Lett. 1990, 2, 147. [Google Scholar] [CrossRef]
- Meyer, R.; Liebert, L.; Strzelecki, L.; Keller, P. Ferroelectric liquid crystals. J. Phys. Lett. 1975, 36, 69. [Google Scholar] [CrossRef]
- Riza, N.; Yuan, S. Low optical interchannel crosstalk, fast switching speed, polarisation independent 2×2 fibre optic switch using ferroelectric liquid crystals. Electron. Lett. 1998, 34, 1341. [Google Scholar] [CrossRef]
- Sreenilayam, S.P.; Panov, V.P.; Vij, J.K.; Shanker, G. The NTB phase in an achiral asymmetrical bent-core liquid crystal terminated with symmetric alkyl chains. Liq. Cryst. 2017, 44, 244. [Google Scholar] [CrossRef]
- Sreenilayam, S.P.; Panarin, Y.P.; Vij, J.K.; Torgova, S.I.; Lehmann, A.; Tschierske, C. Flexoelectric polarization studies in bent-core nematic liquid crystals. Phys. Rev. E 2015, 92, 022502. [Google Scholar] [CrossRef] [Green Version]
- Torgova, S.; Sreenilayam, S.P.; Panarin, Y.P.; Francescangeli, O.; Vita, F.; Vij, J.K.; Pozhidaev, E.; Minchenko, M.; Ferrero, C.; Strigazzi, A. Short bent-core molecules: X-ray, polarization, dielectricity, texture and electro-optics investigations. Phys. Chem. Chem. Phys. 2017, 19, 22946. [Google Scholar] [CrossRef]
- Sreenilayam, S.P.; Rodriguez-Lojo, D.; Panov, V.P.; Swaminathan, V.; Vij, J.K.; Panarin, Y.P.; Gorecka, E.; Panov, A.; Stevenson, P.J. Design and investigation of de Vries liquid crystals based on 5-phenyl-pyrimidine and( R, R )2,3-epoxyhexoxy backbone. Phys. Rev. E 2017, 96, 042701. [Google Scholar] [CrossRef]
- Swaminathan, V.; Panov, V.P.; Panarin, Y.P.; Sreenilayam, S.P.; Vij, J.K.; Panov, A.; Rodriguez-Lojo, D.; Stevenson, P.J.; Gorecka, E. The effect of chiral doping in achiral smectic liquid crystals on the de Vries characteristics: Smectic layer thickness, electro-optics and birefringence. Liq. Cryst. 2018, 45, 513. [Google Scholar] [CrossRef]
- Sreenilayam, S.P.; Panarin, Y.P.; Vij, J.K.; Lehmann, A.; Tschierske, C. Physical Properties of SmAb Phase in an Achiral Bent–Core Smectic Liquid Crystal. Ferroelectrics 2012, 431, 196. [Google Scholar] [CrossRef]
- Sreenilayam, S.P.; Rodriguez-Lojo, D.; Agra-Kooijman, D.M.; Vij, J.K.; Panov, V.P.; Panov, A.; Fisch, M.R.; Kumar, S.; Stevenson, P.J. de Vries liquid crystals based on a chiral 5-phenylpyrimidine benzoate core with a tri- and tetra-carbosilane backbone. Phys. Rev. Mater. 2018, 2, 025603. [Google Scholar] [CrossRef]
- Alex, V.; Dubtsov, A.; Panarin, Y.; Wilkinson, T. Optical Performance of Non-blocking 4×4 Optical Switch: Simulation and Experiment. Euro. Disp. 2007, S9-3, 161. [Google Scholar]
- Fracasso, B.; de Bougrenet de la Tocnaye, J.L.; Noirie, L.; Razzak, M.; Danniel, E. Performance Assessment of a Liquid Crystal Multichannel Photonic Spaceswitch. In Photonics in Switching (Technical Digest); Academic Press: Cambridge, MA, USA, 2001; p. 24. [Google Scholar]
- Yuliya, S.; Gerald, F.; Qian, W. Fast free-space photonic switch based on a ferroelectric liquid crystal. Proc. SPIE 2006, 6185, 618518. [Google Scholar]
Cross-Talk Sources | Measured Cross-Talk in (dB) |
---|---|
Ap | 27 |
As | 19 |
A1(A+) | 21 |
A0(A||) | 19 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sreenilayam, S.P.; Brabazon, D.; Panarin, Y.P. Fast Ferroelectric Liquid Crystal Based Optical Switch: Simulation and Experiments. Crystals 2019, 9, 388. https://doi.org/10.3390/cryst9080388
Sreenilayam SP, Brabazon D, Panarin YP. Fast Ferroelectric Liquid Crystal Based Optical Switch: Simulation and Experiments. Crystals. 2019; 9(8):388. https://doi.org/10.3390/cryst9080388
Chicago/Turabian StyleSreenilayam, Sithara P., Dermot Brabazon, and Yuri P. Panarin. 2019. "Fast Ferroelectric Liquid Crystal Based Optical Switch: Simulation and Experiments" Crystals 9, no. 8: 388. https://doi.org/10.3390/cryst9080388
APA StyleSreenilayam, S. P., Brabazon, D., & Panarin, Y. P. (2019). Fast Ferroelectric Liquid Crystal Based Optical Switch: Simulation and Experiments. Crystals, 9(8), 388. https://doi.org/10.3390/cryst9080388