Element Segregation and Electrical Properties of PMN-32PT Grown Using the Bridgman Method
Abstract
:1. Introduction
2. Experimental Procedure
3. Results and Discussion
3.1. RO-XRD
3.2. Axis Distribution
3.3. Radial Distribution
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Xue, A.X.; Fang, C.; Wang, C.; Jia, Y.M.; Liu, Y.S.; Luo, H.S. Uniaxial stress-induced ferroelectric depolarization in <001>-oriented 0.72Pb(Mg1/3Nb2/3)O3-0.28PbTiO3 single crystal. J. Alloys Compd. 2015, 647, 14–17. [Google Scholar] [CrossRef]
- Li, Z.R.; Xu, Z.; Xi, Z.Z.; Cao, L.H.; Yao, X. Dielectric loss anomalies of 0.68PMN-0.32PT single crystal and ceramics at cryogenic temperature. J. Electroceram. 2008, 21, 279–282. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, R.; Sun, E.W.; Cao, W.W. Temperature dependence of electric-field-induced domain switching in 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 single crystal. J. Alloys Compd. 2012, 527, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Sun, E.W.; Cao, W.W. Relaxor-based ferroelectric single crystals: Growth, domain engineering, characterization and applications. Prog. Mater. Sci. 2014, 65, 124–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, F.; Zhang, S.; Xu, Z.; Wei, X.Y.; Luo, J.; Shrout, T.R. Composition and phase dependence of the intrinsic and extrinsic piezoelectric activity of domain engineered (1−x)Pb(Mg1/3Nb2/3)O3−xPbTiO3 crystals. J. Appl. Phys. 2010, 108, 074106. [Google Scholar] [CrossRef] [PubMed]
- Guerra, J.D.L.S.; Lente, M.H.; Eiras, J.A. Non-linear dielectric properties in based-PMN relaxor ferroelectrics. J. Eur. Ceram. Soc. 2017, 27, 4033–4036. [Google Scholar] [CrossRef]
- Zhou, Q.F.; Lam, K.H.; Zheng, H.R.; Qiu, W.B.; Shung, K.K. Piezoelectric single crystal ultrasonic transducers for biomedical applications. Prog. Mater. Sci. 2014, 66, 87–111. [Google Scholar] [CrossRef] [Green Version]
- Shkuratov, S.I.; Baird, J.; Antipov, V.G.; Talantsev, E.F.; Chase, J.B.; Hackenberger, W.; Luo, J.; Jo, H.R.; Lynch, C.S. Ultrahigh energy density harvested from domain-engineered relaxor ferroelectric single crystals under high strain rate loading. Sci. Rep. 2017, 7, 46758. [Google Scholar] [CrossRef] [Green Version]
- Guo, M.S.; Dong, S.X.; Ren, B.; Luo, H.S. A double-mode piezoelectric single-crystal ultrasonic micro-actuator. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2010, 57, 2596–2600. [Google Scholar]
- Xu, G.S.; Luo, H.S.; Wang, P.C.; Xu, H.Q.; Yin, Z.W. Ferroelectric and piezoelectric properties of novel relaxor ferroelectric single crystals PMNT. Chin. Sci. Bull. 2000, 45, 491–495. [Google Scholar] [CrossRef]
- Tian, J.; Han, P.D. Crystal growth and property characterization for PIN-PMN-PT ternary piezoelectric crystals. J. Adv. Dielectr. 2014, 4, 1350027. [Google Scholar] [CrossRef]
- Tian, J.; Han, P.D.; Huang, X.L.; Pan, H.X.; Carroll, J.F.; Payne, D.A. Improved stability for piezoelectric crystals grown in the lead indium niobate-lead magnesium niobate-lead titanate system. Appl. Phys. Lett. 2007, 91, 222903. [Google Scholar] [CrossRef]
- Li, F.; Lin, D.B.; Chen, Z.B.; Cheng, Z.X.; Wang, J.L.; Li, C.C.; Xu, Z.; Huang, Q.W.; Liao, X.Z.; Chen, L.Q.; et al. Ultrahigh piezoelectricity in ferroelectric ceramics by design. Nature. Mater. 2018, 17, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.L.; Deng, H.; Zeng, Z.; Zhang, Z.; Zhao, K.Y.; Chen, J.W.; Nakamori, N.M.; Wang, F.F.; Ma, J.P.; Li, X.B.; et al. Piezoelectric performance enhancement of Pb(Mg1/3Nb2/3)O3-0.25PbTiO3 crystals by alternating current polarization for ultrasonic transducer. Appl. Phys. Lett. 2018, 112, 182901. [Google Scholar] [CrossRef]
- Wang, D.; Yuan, G.L.; Luo, H.S.; Li, J.F.; Viehland, D.; Wang, Y.J. Structural origin of room temperature poling enhanced piezoelectricity in modified Pb(Mg1/3Nb2/3)O3-30%PbTiO3 crystals. J. Am. Ceram. Soc. 2017, 100, 4938–4944. [Google Scholar] [CrossRef]
- Jiao, S.; Tang, Y.X.; Zhao, X.Y.; Wang, T.; Duan, Z.H.; Wang, F.F.; Sun, D.Z.; Luo, H.S.; Shi, W.Z. Growth and electrical properties of epitaxial 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 thin film by pulsed laser deposition. J. Mater. Sci. 2018, 29, 6779–6784. [Google Scholar] [CrossRef]
- Li, F.; Zhang, S.J.; Yang, T.N.; Xu, Z.; Zhang, N.; Liu, G.; Wang, J.L.; Wang, J.L.; Cheng, Z.X.; Ye, Z.G.; et al. The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals. Nat. Common. 2016, 7, 13807. [Google Scholar] [CrossRef] [Green Version]
- Hu, W.H.; Xi, Z.Z.; Fang, P.Y.; Long, W.; Li, X.J.; Bu, Q.Q. A novel poling technique to obtain excellent piezoelectric properties of Pb(Mg1/3Nb2/3)O3-0.32PbTiO3 single crystals. J. Mater. Sci. Mater. Electron. 2015, 26, 3282–3286. [Google Scholar] [CrossRef]
- He, A.G.; Xi, Z.Z.; Li, X.J.; Long, W.; Fang, P.Y.; Zhao, J.; Yu, H.N.; Kong, Y.L. Optical properties of Ho3+- and Ho3+/Yb3+-modified PSN-PMN-PT crystals. Mater. Lett. 2018, 219, 64–67. [Google Scholar] [CrossRef]
- Long, W.; Chu, X.; Xi, Z.Z.; Fang, P.Y.; Li, X.J.; Cao, W.W. Growth and property enhancement of Er3+-doped 0.68Pb(Mg1/3Nb2/3)O3-0.32PbTiO3 single crystal. J. Rare. Earth. 2018, 36, 832–837. [Google Scholar] [CrossRef]
- Xi, Z.Z.; He, A.G.; Fang, P.Y.; Li, X.J.; Long, W. Electric and optical properties of Er3+- and Er3+/Yb3+-modified PSN-PMN-PT crystals. J. Alloys Compd. 2017, 722, 375–380. [Google Scholar] [CrossRef]
- Luo, H.S.; Xu, G.S.; Xu, H.Q.; Wang, P.C.; Yin, Z.W. Compositional homogeneity and electrical preperties of lead magnesium niobate titanate single crystals grown by a Modified Bridgman technique. J. Appl. Phys. 2000, 39, 5581–5585. [Google Scholar] [CrossRef]
- Benayad, A.; Sebald, G.; Lebrun, L.; Guiffard, B.; Pruvost, S.; Guyomar, D.; Beylat, L. Segregation study and segregation modeling of Ti in Pb[(Mg1/3Nb2/3)0.60Ti0.40]O3 single crystal grown by Bridgman method. Mater. Res. Bull. 2006, 41, 1069–1076. [Google Scholar] [CrossRef]
- Zawilski, K.T.; Custodio, M.C.C.; Demattei, R.C.; Lee, S.G.; Monteiro, R.G.; Odagawa, H.; Feigelson, R.S. Segregation during the vertical Bridgman growth of lead magnesium niobate-lead titanate single crystals. J. Cryst. Growth 2003, 258, 353–367. [Google Scholar] [CrossRef]
- Guo, Z.Q.; Fu, T.; Fu, H.Z. Crystal Orientation Measured by XRD and Annotation of the Butterfly Diagram. Mater. Charact. 2000, 44, 431–434. [Google Scholar] [CrossRef]
- Guo, Z.Q.; Jin, L.; Li, F.; Bai, Y. Applications of the rotating orientation XRD method to oriented materials. J. Appl. Phys. D 2009, 42, 012001. [Google Scholar] [CrossRef]
- Guo, Z.Q.; Fu, T.; Wang, N.; Fu, H.Z. A sample XRD method for determining crystal orientation and its distribution. J. Inorg. Mater. 2002, 17, 460–464. [Google Scholar]
- Guo, Z.Q.; Li, F.; Xu, Z. Application of new equipment to determine the orientation of single crystal by XRD. Lab. Sci. 2011, 14, 92–96. [Google Scholar]
- Zhang, Y.Y.; Li, X.B.; Liu, D.A.; Zhang, Q.H.; Wang, W.; Ren, B.; Lin, D.; Zhao, X.Y.; Luo, H.S. The compositional segregation, phase structure and properties of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystal. J. Cryst. Growth 2011, 318, 890–894. [Google Scholar] [CrossRef]
- Zhang, S.J.; Li, F. High performance ferroelectric relaxor-PbTiO3 single crystals: Status and perspective. J. Appl. Phys. 2012, 111, 031301. [Google Scholar] [CrossRef]
- Song, K.X.; Li, Z.R.; Guo, H.S.; Xu, Z.; Fan, S.J. Compositional segregation and electrical properties characterization of [001]-and [011]-oriented co-growth Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystal. J. Appl. Phys. 2018, 123, 154107. [Google Scholar] [CrossRef]
- Ganaoui, M.E.; Bontoux, P. Gravity effects on solidification: The case of an unsteady melt affecting the growth interface. Adv. Space Res. 1999, 24, 1423–1426. [Google Scholar] [CrossRef]
- Volkov, P.K.; Zakharov, B.G.; Serebryakov, Y.A. Numerical and experimental investigations of convection and heat/mass transfer effect in melts on inhomogeneity formation during Ge crystal growth by the Bridgman method. J. Cryst. Growth 1999, 204, 475–486. [Google Scholar] [CrossRef]
- Yang, C.; Xu, Q.Y.; Liu, B.C. Study of dendrite growth with natural convection in superalloy directional solidification via a multiphase-field-lattice Boltzmann model. Comp. Mater. Sci. 2019, 158, 130–139. [Google Scholar] [CrossRef]
- Antar, B.N. Convective instabilities in the melt for solidifying mercury cadmium telluride. J. Cryst. Growth 1991, 113, 92–102. [Google Scholar] [CrossRef]
- Lines, M.E.; Glass, A.M. Principles and Applications of Ferroelectrics and Related Materials; Oxford Univ. Press: Oxford, UK, 1977. [Google Scholar]
Distance(mm) | Mg (mol%) | Nb (mol%) | Ti (mol%) |
---|---|---|---|
0–2 | 31.40 ± 0.16 | 47.11 ± 0.22 | 21.49 ± 0.38 |
2–4 | 28.31 ± 0.28 | 48.12 ± 0.58 | 23.57 ± 0.76 |
4–6 | 26.02 ± 0.14 | 49.44 ± 0.28 | 24.54 ± 0.42 |
6–8 | 28.69 ± 0.01 | 48.77 ± 0.04 | 22.55 ± 0.06 |
8–10 | 32.52 ± 0.24 | 45.53 ± 0.34 | 21.95 ± 0.58 |
10–12 | 26.09 ± 0.10 | 49.58 ± 0.19 | 24.32 ± 0.29 |
12–14 | 25.91 ± 0.03 | 49.23 ± 0.06 | 24.85 ± 0.09 |
14–16 | 25.96 ± 0.26 | 49.34 ± 0.49 | 24.69 ± 0.75 |
16–18 | 28.03 ± 0.25 | 47.65 ± 0.44 | 24.32 ± 0.69 |
18–20 | 25.72 ± 0.19 | 48.86 ± 0.36 | 25.40 ± 0.55 |
20–22 | 23.76 ± 0.21 | 49.89 ± 0.45 | 26.35 ± 0.66 |
22–24 | 25.42 ± 0.01 | 48.29 ± 0.02 | 26.29 ± 0.03 |
24–26 | 25.35 ± 0.19 | 48.17 ± 0.36 | 26.47 ± 0.55 |
26–28 | 23.13 ± 0.14 | 48.56 ± 0.28 | 28.31 ± 0.42 |
28–30 | 21.47 ± 0.23 | 49.37 ± 0.53 | 29.16 ± 0.78 |
Stoichiometry | 22.67 | 45.33 | 32.00 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Xi, Z.; Fang, P.; Li, X.; Long, W.; He, A. Element Segregation and Electrical Properties of PMN-32PT Grown Using the Bridgman Method. Crystals 2019, 9, 98. https://doi.org/10.3390/cryst9020098
Wang S, Xi Z, Fang P, Li X, Long W, He A. Element Segregation and Electrical Properties of PMN-32PT Grown Using the Bridgman Method. Crystals. 2019; 9(2):98. https://doi.org/10.3390/cryst9020098
Chicago/Turabian StyleWang, Sijia, Zengzhe Xi, Pinyang Fang, Xiaojuan Li, Wei Long, and Aiguo He. 2019. "Element Segregation and Electrical Properties of PMN-32PT Grown Using the Bridgman Method" Crystals 9, no. 2: 98. https://doi.org/10.3390/cryst9020098
APA StyleWang, S., Xi, Z., Fang, P., Li, X., Long, W., & He, A. (2019). Element Segregation and Electrical Properties of PMN-32PT Grown Using the Bridgman Method. Crystals, 9(2), 98. https://doi.org/10.3390/cryst9020098