#
Small Polaron Hopping in Fe:LiNbO_{3} as a Function of Temperature and Composition

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Experiment

#### 2.1. Samples

#### 2.2. Transient Absorption

## 3. Monte Carlo Simulations

#### 3.1. Decay Model

#### 3.2. Simulation Code

## 4. Results and Discussion

#### 4.1. Activation Energies Deduced via TAS

#### 4.2. Hopping Regimes’ Landscapes Inspected by Monte Carlo Simulations

#### 4.2.1. Free Polaron Transport

#### 4.2.2. Bound Polaron Transport

## 5. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Imlau, M.; Badorreck, H.; Merschjann, C. Optical nonlinearities of small polarons in lithium niobate. Appl. Phys. Rev.
**2015**, 2, 040606. [Google Scholar] [CrossRef] - Bazzan, M.; Sada, C. Optical waveguides in lithium niobate: Recent developments and applications. Appl. Phys. Rev.
**2015**, 2, 040603. [Google Scholar] [CrossRef] - Günter, P.; Huignard, J.-P. Photorefractive Materials and Their Applications 1; Springer: New York, NY, USA, 2006; Volume 113. [Google Scholar]
- He, J.; Franchini, C.; Rondinelli, J.M. Lithium niobate-type oxides as visible light photovoltaic materials. Chem. Mater.
**2016**, 28, 25–29. [Google Scholar] [CrossRef] - Schirmer, O.F.; Imlau, M.; Merschjann, C. Bulk photovoltaic effect of LiNbO
_{3}: Fe and its small-polaron-based microscopic interpretation. Phys. Rev. B**2011**, 83, 165106. [Google Scholar] [CrossRef] - Tisdale, W.A.; Williams, K.J.; Timp, B.A.; Norris, D.J.; Aydil, E.S.; Zhu, X.-Y. Hot-electron transfer from semiconductor nanocrystals. Science
**2010**, 328, 1543–1547. [Google Scholar] [CrossRef] [PubMed] - Nolan, M. First-principles prediction of new photocatalyst materials with visible-light absorption and improved charge separation: Surface modification of rutile TiO
_{2}with nanoclusters of MgO and Ga_{2}O_{3}. ACS Appl. Mater. Interfaces**2012**, 4, 5863–5871. [Google Scholar] [CrossRef] [PubMed] - Migani, A.; Blancafort, L. Excitonic interfacial proton-coupled electron transfer mechanism in the photocatalytic oxidation of methanol to formaldehyde on TiO
_{2}(110). J. Am. Chem. Soc.**2016**, 138, 16165–16173. [Google Scholar] [CrossRef] [PubMed] - Sezen, H.; Shang, H.; Bebensee, F.; Yang, C.; Buchholz, M.; Nefedov, A.; Heissler, S.; Carbogno, C.; Scheffler, M.; Rinke, P.; et al. Evidence for photogenerated intermediate hole polarons in ZnO. Nat. Commun.
**2015**, 6, 6901. [Google Scholar] [CrossRef] [PubMed][Green Version] - Volk, T.; Wöhlecke, M. Lithium Niobate: Defects, Photorefraction and Ferroelectric Switching; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008; Volume 115. [Google Scholar]
- Marcus, R.A. On the theory of oxidation-reduction reactions involving electron transfer. I. J. Chem. Phys.
**1956**, 24, 966–978. [Google Scholar] [CrossRef] - Holstein, T. Studies of polaron motion: Part II. The “small” polaron. Ann. Phys.
**1959**, 8, 343–389. [Google Scholar] [CrossRef] - Emin, D. Polarons; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Austin, I.G.; Mott, N.F. Polarons in crystalline and non-crystalline materials. Adv. Phys.
**2001**, 50, 757–812. [Google Scholar] [CrossRef] - Schirmer, O.F.; Imlau, M.; Merschjann, C.; Schoke, B. Electron small polarons and bipolarons in LiNbO
_{3}. J. Phys. Condens. Matter**2009**, 21, 123201. [Google Scholar] [CrossRef] [PubMed] - Metzler, R.; Klafter, J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep.
**2000**, 339, 1–77. [Google Scholar] [CrossRef] - Mhaouech, I.; Guilbert, L. Temperature dependence of small polaron population decays in iron-doped lithium niobate by monte carlo simulations. Solid State Sci.
**2016**, 60, 28–36. [Google Scholar] [CrossRef] - Guilbert, L.; Vittadello, L.; Bazzan, M.; Mhaouech, I.; Messerschmidt, S.; Imlau, M. The elusive role of Nb
_{Li}bound polaron energy in hopping charge transport in Fe:LiNbO_{3}. J. Phys. Condens. Matter**2018**, 30, 125701. [Google Scholar] [CrossRef] [PubMed] - Herth, P.; Granzow, T.; Schaniel, D.; Woike, T.; Imlau, M.; Krätzig, E. Evidence for light-induced hole polarons in LiNbO
_{3}. Phys. Rev. Lett.**2005**, 95, 067404. [Google Scholar] [CrossRef] [PubMed] - Ciampolillo, M.V.; Zaltron, A.; Bazzan, M.; Argiolas, N.; Sada, C. Quantification of iron (Fe) in lithium niobate by optical absorption. Appl. Spectrosc.
**2011**, 65, 216–220. [Google Scholar] [CrossRef] - Kurz, H.; Krätzig, E.; Keune, W.; Engelmann, H.; Gonser, U.; Dischler, B.; Räuber, A. Photorefractive centers in LiNbO
_{3}, studied by optical-, mössbauer-and epr-methods. Appl. Phys. A Mater. Sci. Process.**1977**, 12, 355–368. [Google Scholar] [CrossRef] - Merschjann, C.; Schoke, B.; Imlau, M. Influence of chemical reduction on the particular number densities of light-induced small electron and hole polarons in nominally pure LiNbO
_{3}. Phys. Rev. B**2007**, 76, 085114. [Google Scholar] [CrossRef] - Merschjann, C.; Schoke, B.; Conradi, D.; Imlau, M.; Corradi, G.; Polgar, K. Absorption cross sections and number densities of electron and hole polarons in congruently melting LiNbO
_{3}. J. Phys. Condens. Matter**2008**, 21, 015906. [Google Scholar] [CrossRef] [PubMed] - Kohlrausch, R. Ueber das dellmann’sche elektrometer. Annalen der Physik
**1847**, 148, 353–405. [Google Scholar] [CrossRef] - Berben, D.; Buse, K.; Wevering, S.; Herth, P.; Imlau, M.; Woike, T. Lifetime of small polarons in iron-doped lithium-niobate crystals. J. Appl. Phys.
**2000**, 87, 1034–1041. [Google Scholar] [CrossRef] - Carnicero, J.; Carrascosa, M.; García, G.; Agulló-López, F. Site correlation effects in the dynamics of iron impurities Fe
^{2+}/Fe^{3+}and antisite defects ${\mathrm{Nb}}_{\mathrm{Li}}^{4+}/{\mathrm{Nb}}_{\mathrm{Li}}^{5+}$ after a short-pulse excitation in LiNbO_{3}. Phys. Rev. B**2005**, 72, 245108. [Google Scholar] [CrossRef] - Zylbersztejn, A. Thermally activated trapping in Fe-doped LiNbO
_{3}. Appl. Phys. Lett.**1976**, 29, 778–780. [Google Scholar] [CrossRef] - Sheri, L.; Shamblin, B.C.; Hancock, Y.D.; Michael, J.P. Interpretation of relaxation time constants for amorphous pharmaceutical systems. J. Pharm. Sci.
**2000**, 89, 417–427. [Google Scholar] - Wöhlecke, M.; Volk, T. Lithium Niobate; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]

**Figure 1.**Typical experimental results of TA spectroscopy on the sample Fe:LN 0.1 mol %. (

**a**) Room temperature; (

**b**) Low temperature.

**Figure 2.**Arrhenius plot of the mean decay time of the signal at 785 nm, calculated using the parameters of the Kohlrausch, Williams and Watts (KWW) fit of the Transient Absorption Spectroscopy (TAS) data. The plots evidence a change in the transport mechanism around $200\phantom{\rule{0.166667em}{0ex}}\mathrm{K}$. The high temperature regime is described by an activation energy of [U ∼ 0.42] eV and is well matched by numerical simulations in sample Fe:LN 0.02 mol %.

Final site | ||||

Energy in eV | Free (FP) | Antisite (GP) | Fe | |

Free (FP) | 0.273 | 0.156 | 0.003 | |

Initial site | Antisite (GP) | 0.551 | 0.375 | 0.038 |

Fe | 1.378 | 1.018 | 0.350 |

**Figure 4.**(

**Left**) Fraction of hops as a free polaron ${N}_{FP-FP}/{N}_{tot}$ as a function of temperature and $\left[{\mathrm{Nb}}_{\mathrm{Li}}\right]$ concentration for an undoped sample $\left(\right)$. (

**Right**) Total number of hops ${N}_{FP-FP}$ as a function of the temperature and $\left[\mathrm{Fe}\right]$ concentration for a stoichiometric sample ($\left[{\mathrm{Nb}}_{\mathrm{Li}}\right]=0$).

**Figure 5.**(

**Left**) ${N}_{GP-GP}/{N}_{tot}$ as a function of temperature and antisite concentration for an undoped sample ($\left[\mathrm{Fe}\right]=0$). (

**Right**) ${N}_{GP-GP}$ as a function of the temperature and $\left[\mathrm{Fe}\right]$ concentration for a congruent sample ($\left[{\mathrm{Nb}}_{\mathrm{Li}}\right]=19\times {10}^{25}\phantom{\rule{0.166667em}{0ex}}{\mathrm{m}}^{-3}$). Free polaron contribution has been disregarded for simplicity. Note the different temperature range in the two plots.

**Table 1.**Defect concentrations for the samples under study determined by optical absorption (see the text).

$(\times {10}^{24}\phantom{\rule{0.222222em}{0ex}}{\mathbf{m}}^{-3})$ | [Fe] | [$\mathbf{Fe}{}^{2+}$] | [$\mathbf{Fe}{}^{3+}$] | [$\mathbf{Fe}{}^{2+}$]/[$\mathbf{Fe}{}^{3+}$] | [$\mathbf{Nb}{}_{\mathbf{Li}}$] |
---|---|---|---|---|---|

Fe:LN 0.02 mol % | 3.8 | 0.1 | 3.7 | 0.04 | 190.9 |

Fe:LN 0.05 mol % | 9.5 | 0.8 | 7.9 | 0.1 | 190.9 |

Fe:LN 0.1 mol % | 18.90 | 13.7 | 5.2 | 2.62 | 190.9 |

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Vittadello, L.; Bazzan, M.; Messerschmidt, S.; Imlau, M.
Small Polaron Hopping in Fe:LiNbO_{3} as a Function of Temperature and Composition. *Crystals* **2018**, *8*, 294.
https://doi.org/10.3390/cryst8070294

**AMA Style**

Vittadello L, Bazzan M, Messerschmidt S, Imlau M.
Small Polaron Hopping in Fe:LiNbO_{3} as a Function of Temperature and Composition. *Crystals*. 2018; 8(7):294.
https://doi.org/10.3390/cryst8070294

**Chicago/Turabian Style**

Vittadello, Laura, Marco Bazzan, Simon Messerschmidt, and Mirco Imlau.
2018. "Small Polaron Hopping in Fe:LiNbO_{3} as a Function of Temperature and Composition" *Crystals* 8, no. 7: 294.
https://doi.org/10.3390/cryst8070294